Смекни!
smekni.com

Определение параметров двигателя синхронного вертикального ВДС 2–325-24 мощностью 4000 кВт (стр. 6 из 7)

МДС обмотки возбуждения в номинальном режиме:

2.8 Расчет перегрузочной способности:

2.8.1 МДС обмотки возбуждения в режиме трехфазного К.З. при номинальном токе статора:

2.8.2Проверка кратности максимального синхронного момента:

;
условие выполняется.

2.9 Расчет обмотки возбуждения:

2.9.1 Ширина провода ОВ:

Ширина провода обмотки возбуждения ограничивается:

1). условием ее размещения в межполюсном пространстве

:

так как число пар полюсов р=24 >2;

; 27,281<42,084; условие выполняется;

2).Условием надежного крепления обмотки возбуждения на полюсе

:

; 27.281<38,773; условие выполняется;

Полученные значения должны соответствовать пределам:

и

2.9.2 Высота провода ОВ:

Приводим размеры провода обмотки возбуждения в соответствие со стандартными размерами шинной меди и определим сечение провода

:

3,53
;

=32
;

=110,3

2.9.3 Средняя длина витка обмотки возбуждения:

так как

;
то выбираем формулу:


2.9.4 Номинальное напряжение возбуждения:

2.9.5 Число витков ОВ:

округляется до
46

2.9.6 Ток возбуждения х.х.:

2.9.7 Ток возбуждения при номинальной нагрузке:

2.9.8 Плотность тока в обмотке возбуждения при номинальной нагрузке:

2.9.9 Перегрев обмотки возбуждения:

Номинальные значения напряжения и тока обмотки возбуждения приводим в соответствие с номинальными данными возбудителей:

140 В;

450 А.

Окончательный выбор размеров проводника обмотки возбуждения должен удовлетворять условиям

;
;

;
;

;
;

Все условия выполняются.

3. Синтез и оптимизация электромагнитного ядра на ПК

Параметрическая оптимизация проводится на основе результатов аналитического ручного расчета, приведенного в главе 2. Процесс оптимизации имеет пошаговый характер и осуществляется при помощи программы “OPTCD”. На каждом шаге производится корректировка по одному или нескольким параметрам.

Данная глава содержит описание процесса направленного перебора значений с целью корректировки основных показателей двигателя. Основными этапами параметризации являются:

1. Поиск приемлемого варианта;

2. Оптимизация по минимуму приведенной стоимости (метод деформируемого многогранника);

3. Оптимизация по минимуму резервов (метод ЛП/tau);

Номинальные данные:

Номинальная мощность Pн=4000кВт

Номинальное линейное напряжение Uн=6кВ

Номинальный коэффициент мощности cosφн=0.9

Номинальная частота напряжения сети fн=50Гц

Число пар полюсов p=12

Номинальный ток возбудителя Iвн=450А

Исходные значения конструктивных параметров:

Внутренний диаметр статора Di=2.933м

Число пазов статора Z=288

Число эффективных проводников в пазу Uп=8

Длина сердечника статора lt=0.39м

Величина воздушного зазора δ=0.009м

Ширина паза статора bп=0.013м

Высота паза статора hп=0.071м

Ширина сердечника полюса bm=0.208м

Высота сердечника полюса hm=0.208м

Ширина полюсного наконечника bpm=0.278м

Высота проводника обмотки возбуждения aem=3.53мм

Ширина проводника обмотки возбуждения bem=32мм

Число стержней демпферной обмотки nc=10

3.1 Поиск приемлемого варианта

Оптимизация параметров двигателя производится с помощью программы поисковой оптимизации двигателя «OPTCD». В таблице 1 приведены результаты ручного расчета двигателя по исходным данным. В первых двух колонках приводятся исходные значения, другие две – рассчитанные значения основных показателей двигателя. При выполнении всех ограничений целевая функция CF должна быть равна приведенной стоимости двигателя CД.

Таблица 1 - Экспресс – информация по данным, полученным при ручном расчете.

Из расчета видно, что двигатель с такими параметрами не удовлетворяет условиям, заданным в начале работы:

1. Как видим отношение Ms/Mн = 1.2 слишком мало.

2. Перегрев обмотки статора слишком велик.

3. Целевая функция CF больше приведенной стоимости двигателя, что говорит о наложении штрафов за несоблюдение ограничений.

Если мы увеличим высоту проводника обмотки возбуждения aem, уменьшим число стержней демпферной обмотки nс, и уменьшим внутренний диаметр статора, то получим следующие результаты (таблица 2):

Таблица 2 - Экспресс – информация по скорректированным данным.

Как мы можем видеть, программа не налагает штрафов на двигатель с данными параметрами, но в этом случае получены не наилучшие значения удельных расходов меди и железа, КПД и относительно высокой для заданной номинальной мощности двигателя приведенной стоимостью.

3.2 Оптимизация по минимуму приведенной стоимости

Произведем расчет в программе OPTCD по методу деформируемого многогранника и получим минимум приведенной стоимости и оптимальные показатели Uп и Z(таблица 3):


Таблица 3 - Экспресс – информация по данным, полученным в методе деформируемого многогранника.

3.3.Оптимизация по минимуму резервов

Произведем расчет в программе OPTCD по методу ЛП/tauи получим минимум расхода активных материалов и оптимальные показатели Uп и Z:

Таблица 4 - Экспресс–информация по данным, полученным в методе ЛП/tau.

В последних двух таблицах представлены данные, рассчитанные компьютером, направленные на уменьшение приведенной стоимости и снижение расходов активных материалов. Также компьютер просчитал оптимальную комбинацию числа пазов статора Z и числаэффективных проводников в пазу Uп. Примем эти две величины как постоянные и попробуем улучшить характеристики нашего двигателя.

Как можно увидеть из Таблицы 2, программа не налагает штрафы на двигатель с данными параметрами, но перегрев демпферной обмотки необходимо поднять для более результативной работы.

Для достижения этой цели и для увеличения КПД чуть увеличим внутренний диаметр статора, уменьшим ширину проводника обмотки возбуждения bem , уменьшим число стержней демпферной обмотки nc, и изменим длину сердечника статора. Также увеличим ширину полюсного наконечника и высоту паза статора. Получим следующие результаты(таблица 5 ):