Смекни!
smekni.com

Расчет редуктора системы верхнего привода (стр. 4 из 9)

· отсутствие саморегулирования скорости вращения выходного вала в зависимости от нагрузки на рабочем инструменте, и, как следствие, снижение производительности привода;

· отсутствие самоторможения привода и возможность генерации тока при возникновении эффекта «пружины» в случае прихвата бурильной колонны и ее обратном вращении, разрушающего электронную систему управления СВП;

· большие тепловые потери в электродвигателе, в особенности при максимальных моментах, требующие наличия собственной системы охлаждения, что усложняет и удорожает конструкцию СВП;

· несоответствие электрических параметров СВП параметрам отечественной электрической сети, что приводит к необходимости использования автономной системы электропривода (дополнительный модуль дизель–генератора, дополнительный модуль частотного управления электродвигателем);

· дополнительные затраты на дизельное топливо и транспортные расходы при использовании дизель-генераторов. При годовой нагрузке СВП порядка 4000 моточасов расход топлива только одной дизель-генераторной установки с указанным выше коэффициентом использования мощности составит более 120 т;

· необходимость применения многоступенчатых механических редукторов в приводе электродвигателей для снижения частоты вращения выходного вала, что приводит к снижению надежности, усложнению и повышению стоимости конструкции СВП.

Основные преимущества и недостатки СВП с гидрообъемным приводом аналогичны преимуществам и недостаткам ВСП с электроприводом.

Дополнительными преимущества СВП с гидроприводомявляются:

· расширение скоростного (силового) диапазона при меньшей входной мощности за счет применения гидромоторов с переменным рабочим объемом (привод оснащен системой клапанов, позволяющих изменять рабочий объем гидромотора в два раза). Это позволяет получить несколько ступеней на внешней характеристике и, в отличие от СВП с электроприводом, в диапазоне оборотов выходного вала от 50 до 200 об/мин работать на режиме, близком к режиму постоянной мощности.

· в гидравлическом приводе имеется возможность путем дросселирования жидкости гасить эффект «пружины» в случае прихвата колонны и ее обратном вращении;

· достоинством гидроприводных СВП является возможность сделать выбор в пользу применения безредукторного привода наоснове использованиявысокомоментных гидромоторов, что легло в основу создания семейства СВП отечественного производства.

Выбираем гидродвигатель.

3.2 Кинематическая схема привода

При выборе кинематической схемы были проанализированы несколько схем:

Схема 1:Схема трехвального редуктора с шевронной передачей.

Преимуществом данной схемы является отсутствие осевой нагрузки на промежуточном вале, и меньшая осевая сила на выходном.

Недостатком является сложность конструкции, дороговизна, сложность обеспечения самоустановки плавающего вала, а так же не целесообразность уменьшения осевой нагрузки на выходном валу, т.к. осевая сила от веса колонны значительно превышает осевые силы от зацепления.

Схема 2. Схема четырехвального редуктора.

Преимуществом данной схемы является наличие двух промежуточных валов что позволяет избежать шестеренок большого и слишком малого диаметра. Преимуществом является возможность подбора различных модулей шестеренок, и позволяет избежать варианта с наименьшим допустимым числом зубьев.

Недостатками данной схемы является наличие дополнительного вала, подшипников, что повышает стоимость редуктора.

Схема 3.Схема трехвального редуктора.

Преимуществом данной схемы является простота конструкции, малые габариты, удобство компоновки, малые осевые размеры валов.

Недостатком данной схемы является наличие двух шестеренок с минимальным допустимым количеством зубьев, необходимость использования больших модулей на промежуточном и входном валах.

Вариант 4

Схема трехвального редуктора.

Преимуществом данной схемы является наличие одного вала для двух гидромоторов, что позволяет сократить количество подшипников

Недостатком данной схемы является входной вал. Так как момент, передаваемый им будет в два раза больше чем в остальных схемах, то размеры и стоимость вала существенно возрастут. Недостатком является и расположение одного из моторов над редуктором.

Вариант 5

Схема четырехвального редуктора.

Отличием данной схемы от схемы варианта 2 является компоновка валов. Данная схема имеет меньшие габариты но для сборки редуктора необходимо две крышки для подшипников, что понижает точность сборки.

Выбираем схему 3.

3.2.1 Энерго-кинематический расчет

Рис. 1.

3 – косозубая шестерня; 4 – косозубое зубчатое колесо;

5- косозубая шестерня; 6- косозубое зубчатое колесо; I – быстроходный вал; II – промежуточный вал; III – тихоходный вал.

Расчет КПД привода

η=·ηб.п.·ηт.п.·ηп4 ·ηмасла (1.1)


где hб.п - КПД пары цилиндрических зубчатых колес, находящихся в закрытом корпусе hб.п = 0,98;

hп - коэффициент, учитывающий потери пары подшипников качения hп = 0,99;

ηмасла - КПД масла ηмасла=0,99.

Суммарный коэффициент полезного действия для проектируемого редуктора

η=0,98·0,98.·0,994·0,98·0,99=0,903.

3.2.2 Разбивка общего передаточного отношения по ступеням

Общее передаточное число привода определяется по следующей формуле :

(1.4)

где nд – номинальная частота вращения гидродвигателя, об/мин.

n1 – частота вращения быстроходного вала.

n2 – частота вращения промежуточного вала.

n3 – частота вращения тихоходного вала.

где Т2 – момент на промежуточном валу.

Частоты вращения валов. Мощности на валах

Результаты вычислений представим в виде таблицы

Таблица 2.

Номер вала i n, об/мин Т,Н**м N, кВт
Вал гидродвигателя 1 650 620 42,1
I быстроходный 650 620 42,1
3,62
II промежуточный 180 4355 79.9
2,92
III выходной 62 12350 75.8

NI=Nэд·ηрп·ηподш

NII=NI·ηбп·ηподш·ηмасла

NIII=NII·ηтп·ηподш·ηмасла

3.3 Проектирование валов редуктора

3.3.1 Проектировочный расчет валов

Задачей данного раздела является предварительное определение диаметров валов редуктора. Допускается, что валы гладкие, круглые стержни, испытывающие только статическое кручение. Критерием при расчёте является статическая прочность.

Условие прочности:

(3.1)

где

- допускаемое напряжение на кручение.

Принимаем: для быстроходного вала

1=15 Н/мм2;

для промежуточного вала

2=25 Н/мм2;

для тихоходного вала

3=35 Н/мм2.

(3.2)

где Т – крутящий момент, Н×мм;

Wк – момент сопротивлению кручению, мм3.

(3.3)

где dв – диаметр вала, мм.

Выразим диаметр из формул (3.1), (3.2) и (3.3):

(3.4)

Определим диаметры валов:

· быстроходного вала (Т1=105,3 Н×м):

· промежуточного вала (Т2=4355Н×м):

· тихоходного вала (Т3=12350 Н×м):

Окончательно выбираем из стандартного ряда: dв1=60 мм, dв2=95 мм, dв3=120 мм

Конструирование валов редуктора

Определим все диаметры валов редуктора.

· Эскиз быстроходного вала

Рис. 3.1.

Выбираем из стандартного ряда на подшипники: dВ1П =75 мм

· Эскиз промежуточного вала

Рис. 3.2.

· Эскиз тихоходного вала

Рис. 3.3

d1 =130 мм . d2 =150 мм

3.3.2 Реакции в опорах валов

Для нахождения реакций в опорах валов составим расчётную схему.

Силовая схемапривода

рис. 4