Смекни!
smekni.com

Расчет системы воздухоснабжения промышленного объекта (стр. 1 из 7)

Братский Государственный Университет

Министерство образования РФ

Братский Государственный университет

Факультет Энергетики и автоматики

Кафедра промышленной теплоэнергетики

Курсовой проект по дисциплине:

«Технологические энергосистемы»

ТЕМА: РАСЧЕТ СИСТЕМЫ ВОЗДУХОСНАБЖЕНИЯ ПРОМЫШЛЕННОГО ОБЪЕКТА

Братск 2008г.


Задание

Расчет системы воздухоснабжения промышленного объекта: цеха сортировки фанерного завода

Вариант №30 исходные данные:

1. Расстояние от КС до цеха

, м

2. Размер цеха:

Длина

, м

Ширина

, м

Высота

, м

3. Количество воздухоподогревателей

, шт.

4. Количество пневмолиний

, шт.

5. Число задвижек

, шт.

6. Число поворотов

, шт.

7. Длина трассы в цехе

, м

8. Длина ответвлений

, м

9. Сопротивление ВП,

, кПа

10.Сопротивление в насосе КС,

*
, МПа

11.Шероховатость трассы

, м

12.Скорость воздуха

,м/с

13.Давление для потребителя

, МПа

14.Средний расход сжатого воздуха на одно ответвление

, н

Введение

Практически на любом промышленном предприятии в качестве газообразного энергоносителя используется сжатый воздух. На производство конечного технологического продукта доля расхода первичной для его производства на различные нужды энергии колеблется от 5% до 30 % от общего энергопотребления. Поэтому от надежности систем воздухоснабжения во многом зависит надежность, а нередко и безопасность проводимого технологического процесса. Прекращение подачи сжатого воздуха на предприятии приводит, как правило, к крупной аварии. В силу своей универсальности пневмосистемы предприятий претерпевают значительные изменения, как по режимам потребления сжатого воздуха, так и требованиям к его подготовке. В связи с этим возникает необходимость периодической корректировки отдельных элементов, а в ряде случаев и модернизации всей системы воздухоснабжения промышленного объекта.

Эксплуатацию и совершенствование этих систем ведут службы Главного энергетика предприятия, комплектуемые выпускниками теплоэнергетического профиля и требующие определенной квалификационной подготовки. Решение поставленных задач весьма затруднено практически полным отсутствием соответствующей справочной литературы.

1. Общая характеристика систем воздухоснабжения и потребления энергоносителей

Системы воздухоснабжения промышленных предприятий предназначены для централизованного обеспечения разнообразных потребителей сжатым воздухом с заданными параметрами по количественным (расход) и качественным (давление, температура, влажность, чистота и т.д.) показателям в соответствии с заданным графиком потребления. Для обеспечения индивидуального технологического режима единичных крупных потребителей сжатого воздуха создают блочную компоновку компрессор - технологический агрегат. в этом случае компрессор располагается у потребителя либо в непосредственной близости от объекта устанавливается компрессорная станция для индивидуального регулирования режимов потребления энергоносителя. Это относится прежде всего к предприятиям черной и цветной металлургии, а также химической промышленности, где сосредоточенны наиболее крупные технологические установки, использующие сжатый воздух.

В системы воздухоснабжения входят компрессорные и воздуходувные станции, коммуникации сжатого воздуха (трубопроводный и баллонный транспорт) и распределительные устройства потребителя. На компрессорных станциях устанавливаются устройства для забора и очистки воздуха от механических примесей, компрессоры для получения сжатого воздуха и вспомогательное оборудование для охлаждения, дополнительной осушки и очистки, выравнивания давления и аккумулирования энергоносителя.

В основном станции комплектуются поршневыми компрессорами (а в последнее время винтовыми) единичной производительностью до 1,7м3/с и широким диапазоном давления (нагнетания) от 0,2 до 40 МПа и более или центробежными с единичной производительностью от 2 до 110 м3/с и более и с избыточным давлением от 0,35 до 1 МПа (иногда до 4 МПа).

Система воздухоснабжения является одним из самых энергоемких потребителей, а сжатый воздух - самый распространенный энергоноситель практически на любом промышленном предприятии. У потребителя сжатый воздух расходуется в основном на технологические нужды ( интенсификация процессов горения, получение кислорода, выплавка чугуна и стали и т.д.) и на силовые процессы ( привод многочисленных пневмоустройств и механизмов).

По объемам потребления сжатого воздуха лидируют предприятия черной и цветной металлургии, где крупными единичными потребителями являются: доменные и мартеновские печи, барабанные сушилки и т.д. Для производства 1 тонны чугуна, к примеру, расходуется 800-1000 м3 сжатого воздуха, а единичное потребление энергоносителя конвертером колеблется от 3 до 15 м3/с.

На предприятиях химической промышленности наиболее емким по потреблению сжатого воздуха является производство азотной кислоты ( расход энергоносителя около 4000 м3 на 1 тонну), серной кислоты, аммиачной селитры (расход энергоносителя до 140 м3/с на одну установку).

Крупными потребителями сжатого воздуха являются воздухоразделительные установки, которые обслуживаются крупными турбокомпрессорами (производительностью до 70 м3/с), а затраты энергии на производство сжатого воздуха составляют от 70 до 90% всех энергозатрат в зависимости от типа установки.

В машиностроении, помимо крупных потребителей воздуха в литейных и кузнечных производствах (прессы, обдувочные машины, пескоструйные камеры, вибраторы и т.д.), значительно больше доля использования энергии сжатого воздуха для приводов различных механизмов: пневмомолотки, зажимные и прижимные устройства, окрасочные камеры, пневмодвигатели, пневмодрели и т.д. На машиностроительных заводах применяется, как правило, централизованное воздухоснабжение при значительной неравномерности использования воздуха различными мелкими потребителями.

К достаточно крупным потребителям сжатого воздуха относятся: горнодобывающая и угольная промышленность (буровые устройства, перфораторы, подъемники, системы вентиляции и кондиционирования воздуха); строительная промышленность (распыливание красителей, вибраторы, пневмомолотки и т.д.); нефтедобывающая отрасль.

Сжатый воздух достаточно широко также используется в энергетической промышленности, на транспорте, для нужд связи, автоматики и других отраслях.


2.Коммуникации газообразных энергоносителей

2.1 Трубопроводы компрессорных станций

Трубопроводные коммуникации компрессорных станций - это воздухопроводы, водопроводы, маслопроводы и т.д.

Воздушные коммуникации, предназначенные для транспортирования энергоносителя от всасывающего устройства до потребителя, подразделяются на всасывающий, нагнетательный и магистральный воздухопроводы.

Всасывающий воздухопровод - это участок от воздушного фильтра до всасывающего патрубка компрессора. Для уменьшения потерь на всосе компрессора длина участка должна быть не более10-15 м, число поворотов с радиусом равным трем диаметрам всасывающего воздухопровода минимально. Вблизи трассы не должно быть паропроводов, нагнетательных воздухопроводов и прочих мест выделения тепла. При расположении внутри зданий воздухопроводы теплоизолируются. Скорость воздуха во всасывающем воздухопроводе принимается 10-12 м/с.

Нагнетательный воздухопровод - от патрубка компрессора до фланца вспомогательного оборудования - по возможности должен быть коротким и прямым. Участок трубопровода между концевым воздухопроводом (или влагомаслоотделителем) и воздухосборником (или сборным коллектором) называется подающим. Сжатый воздух в трубопроводах данного типа имеет повышенную температуру, поэтому в целях безопасности работы обслуживающего персонала трубопроводы, как правило, подлежат теплоизоляции.

Внутри зданий воздухопроводы имеют верхнее (по строительным конструкциям) и нижнее (в каналах и траншеях) размещение. Магистральный воздухопровод начинается от сборного коллектора или воздухосборника до потребителя сжатого воздуха. Ряд магистральных воздухопроводов образуют трассу и сеть сжатого воздуха. Кроме того, имеются вспомогательные воздухопроводы: для продувки сосудов, отвода энергоносителя из предохранительных устройств и другие.