Смекни!
smekni.com

Проект ректификационной установки для разделения смеси ацетон-метиловый спирт (стр. 4 из 4)

= 2,5

= 3,1

= 3,2

= 3,8.

Общее число действительных тарелок в колонне равно 32. Верхняя часть колонны содержит 16 тарелки, а нижняя – 16.

Высота колонны определяется по формуле:


где

,
, - высота соответственно сепарационной части колонны, расстояние между днищем колонны и тарелкой.

= 22,5 м

2.6 Определение числа и размеров колпачков

Согласно выбранной колпачковой тарелки типа ТСК - Р принимаем [3, с. 214]: диаметр парового патрубка колпачка dп = 100 мм = 0,10 м

Количество колпачков на тарелке:

= 90 колпачков.

Высота части колпачка над паровым патрубком:

h = 0,25 · dn = 0,25 · 0,1 = 0,025 м.

Расстояние от нижнего края зубца колпачка до тарелки δ = 15 мм. Высота уровня жидкости над верхним обрезом прорезей колпачка h1 = 30 мм.

Диаметр колпачка:

= 164 мм.

Высота прорезей вычисляют из условий оптимального барбатажа, соответствующего полному открытию прорезей для пара:


,
,

где ω0 – скорость пара, соответствующая полному открытию прорезей, м/с;

ξ – коэффициент сопротивления колпачковых тарелок, принимаем 1,75.

Средняя плотность пара и жидкости в колонне:

= 1,49 кг/м3,

= 752,8 кг/м3.

= 14,05 м/с,

= 0,070 м = 70 мм,

Количество прорезей в колпачке:

,

где а – расстояние между прорезями, равное 4 мм

= 100 прорезей

Ширина прорезей в колпачке – 5 мм.


2.7 Расчет гидравлического сопротивления

Общее гидравлическое сопротивление работы колонны:

ΔР = ΔРсух + ΔРσ + ΔРст

Гидравлическое сопротивление неорошаемой тарелки вычисляют:

где ρп – средняя плотность пара, кг/м3;

ξ – коэффициент сопротивления сухой тарелки.

= 480 Па,

= 415 Па.

Гидравлическое сопротивление, обусловленное силами поверхностного натяжения:

ΔРσ =

,

где σ – поверхностное натяжение жидкости, Н/м [2, табл. 4];

d0 – эквивалентный диаметр отверстия, м:


м,

П – периметр прорези, м,

S - площадь поперечного сечения прорези, м2 [3, с. 214].

= 0,06 Па.

Гидравлическое сопротивление жидкостного слоя на тарелке:

ΔРст =

,

где l – высота прорези, принимаем 70 мм;

k – относительная плотность пены, принимаем 0,5;

е – расстояние от верхнего края прорези до сливного порога, равное 20 мм;

ρж - плотность жидкости, кг/м3;

∆h – высота слоя над сливной перегородкой, м:

,

Vж – объемный расход газовой смеси при рабочих условиях, м3/с:


П – периметр сливной перегородки, м

= 0,0103 м3/с,

= 0,028 м.

= 0,0210 м3/с,

= 0,045 м.

Для верхней части колонны:

ΔРст =

= 399 Па.

Для нижней части колонны:

ΔРст =

= 480 Па.

Полное гидравлическое сопротивление:

ΔР = ΔРсух. + ΔРσ + ΔРп

ΔРВ = 480 + 0,06 + 399 = 879,06 Па,

ΔРН = 415 + 0,06 + 480 = 895,06 Па.

Минимальная скорость пара в отверстиях колпачковой тарелке:


и

= 8,78 м/с ,

= 11,57 м/с.

, тарелка работает всеми отверстиями.

Гидравлическое сопротивление всех тарелок абсорбционной колонны:

ΔР = ΔР · п

ΔР = 879,06 · 16 + 895,06 · 16 = 28385,9 Па.

2.8 Расчет патрубков и штуцеров

Внутренний диаметр патрубка определяется из уравнений расхода:

, откуда
,

где G – массовый расход перекачиваемой среды, кг/с

ρ – плотность среды, кг/м3.

Расход перекачиваемой среды известен, а скорость среды в трубопроводе задаются, исходя из следующий значений скоростей, обеспечивающих близкий к оптимальному диаметру трубопровода, при котором суммарные затраты на перемещение среды минимальны [3, с. 16].

Внутренний диаметр штуцера на выходе пара из верхней части колонны и на входе пара в нижнюю часть колонны:


= 0,496 м принимаем d = 500 мм.

Внутренний диаметр штуцера на входе исходной смеси в колонну (массовый расход перекачиваемой среды равен производительности исходной смеси):

,

,

где ρ1 и ρ2 – плотности массы соответственно ацетона и этилового спирта при температурах

:

хF = 0,191 →

= 59,8 ºС,

Ацетон ρ1 = 746 кг/м3

Метиловый спирт ρ2 = 756 кг/м3 при

= 59,8 °С [2, табл. 2].

ρF= 0,30 · 746 + (1 – 0,30) · 756 = 753 кг/м3,

= 0,106 м принимаем d = 125 мм.

Внутренний диаметр штуцера на входе флегмы в колонну (массовый расход перекачиваемой среды равен расходу жидкости в верхней части колонны):


= 0,162 м принимаем d = 200 мм.

Внутренний диаметр штуцера на выходе кубового остатка из колонны (массовый расход перекачиваемой среды равен производительности кубового остатка):

,
,

где ρ1 и ρ2 – плотности массы соответственно ацетона и этилового спирта при температурах

:

хW= 0,017 →

= 64,1 ºС,

Ацетон ρ1 = 740,5 кг/м3

Метиловый спирт ρ2 = 751,9 кг/м3 при

= 64,1 °С [2, табл. 2].

ρW= 0,03 · 740,5 + (1 – 0,03) · 751,9 = 751,6 кг/м3,

= 0,142 м принимаем d = 150 мм.

Внутренний диаметр штуцера на выходе жидкости из колонны (массовый расход перекачиваемой среды равен расходу жидкости в нижней части колонны):

= 0,231 м принимаем d = 250 мм.

СПИСОК ЛИТЕРАТУРЫ

1. К.Ф. Павлов, П.Г. Романков, А.А. Носков. Примеры и задачи по курсу процессов и аппаратов химической технологии. – Л.: Химия, 1987

2. Б. А. Ульянов, А. В. Бадеников, Б. И. Щелкунов, В. Г. Ликучев. Процессы и аппараты химической технологии. Учебное пособие – Ангарск: Изд-во АГТА, 2003

3. Основные процессы и аппараты химической технологии: Пособие по проектированию. Под ред. Ю.И. Дытнерского, 2-е изд., перераб. и дополн.- М.: Химия, 1991

4. Процессы и аппараты химической промышленности: Учебник для техникумов. Под ред. П.Г. Романков, М.И. Курочкина, Ю.Я. Мозжерии и др. - Л.: Химия, 1989