6. Перегруз печи наблюдается при неточном соотношении количества загружаемого концентрата и расхода воздуха, т.е. количества концентрата, поступающего на обжиг, превышает теоретически необходимое количество его при данном расходе воздуха. С избыточным количеством концентрата повышается содержание сульфидной серы в ванне из-за недостатка кислорода на ее окисление. К тому же непрореагировавший концентрат отнимает тепло, в результате чего температура кипящего слоя снижается и печь начинает "затухать". Такое явление легко обнаружить, произведя расчет подачи материала и воздуха в момент снижения температуры, а также анализом сульфидной серы в ванне печи.
При прекращении подачи концентрата резко повышается температура в слое в результате интенсивного окисления имеющегося концентрата и сокращается расход тепла. Во избежание спекания слоя необходимо увеличить его теплоотдачу, что достигается подачей воды в слой. а также увеличением расхода воздуха, снижением подачи кислорода.
7. При транспортировке материала повышенной влажности (12-14% влаги) происходит слипание концентрата и большие куски, которые достигают высоты 4-5 м забивают воздухораспределительные отверстия в подине.
8. Высокое содержание сульфидной серы в огарке может быть в том случае, если материал находится в кипящем слое недостаточное время. В пылях же оно может быть при большом пылеуносе из-за высокой скорости воздуха в слое и при загрузке в печь пересушенного концентрата.
9. При прогорании кессона большое количество воды попадает в слой, что резко увеличивает расход тепла и приводит к остановке печи, если не принять своевременные меры к отключению сгоревшего кессона.
При разработке автоматизированной системы управления процессом обжига цинковых концентратов в печи кипящего слоя, важнейшим этапом синтеза системы является анализ процесса, как объекта управления, то есть определение входных и выходных переменных, нахождение математических зависимостей между входными и выходными переменными описывающих поведение объекта регулирования.
Печь кипящего слоя можно рассматривать, как непрерывно действующий реактор почти идеального перемешивания. Загружаемый сульфидный цинковый концентрат в реакционной ванне печи становится текуч в состоянии кипящего слоя или приобретения псевдоожижения, имеет горизонтальную поверхность, интенсивно перемешивается, перетекает через сливной порог и приобретает другие свойства жидкости за счет подаваемого под давлением воздуха в печь под слой концентрата.
При малых скоростях сыпучий слой цинкового концентрата, лежащий на газопроницаемой поверхности представляет собой фильтрующий слой и его объем не изменяется, он остается неподвижным. С увеличением скорости потока воздуха, обогащенного кислородом, сопротивление слоя возрастает, вследствие трения газовой смеси о поверхность зерен и при прохождении газовых струй по каналам различного сечения, образующимися между зернами концентрата. При достижении определенной скорости газового потока, называемой минимально критической, качественно и объемно изменяется сыпучий слой концентрата и переходит в псевдоожиженное состояние, приобретает свойства жидкости выше перечисленные.
Главной целью обжига является перевод сульфидного цинкового концентрата в окисленный цинк из которого цинк рациональнее восстанавливать.
Таким образом, для процесса обжига цинковых концентратов в печи КС, можно выделить входные материальные переменные, свойства которых изменяются в данном процессе. Ими являются: материальный поток сульфидного цинкового концентрата, который в результате процесса обжига изменяет физико-химические свойства, для чего затрачивается другой материальный поток - воздух обогащенный кислородом.
Выделенные входные переменные или материальные потоки будут характеризоваться некоторой совокупностью входных переменных, зависящих от конструктивных и технологических особенностей агрегата и ведения процесса. Для данного процесса этими особенностями являются: автогенность процесса, так, как для ведения его не требуется затрат энергии со стороны, а затрачиваются лишь воздух и концентрат. Другой особенностью являются выше отмеченное указание, что печь КС рассматривается, как непрерывно действующий реактор почти идеального перемешивания, то есть градиент концентрации ограничен лишь размерами реакционной ванны. Состояние входного материального потока будут характеризоваться входными переменными по концентрату, ими будут являться:
расход концентрата 130 т/сут;
химический состав концентрата, где важнейшие элементы, - это Znобщее содержание которого в концентрате составляет 49,34% и сера общая, содержание составляет в цинковом концентрате 31,40%; гранулометрический состав концентрата с dср равным 0,085 мм, где dср - это средний диаметр зерен концентрата.
Такое выделение входных переменных, характеризующих состояние входного потока по концентрату обусловлено следующими причинами:
расход концентрата влияет на весь режим работы печи кипящего слоя, на ее производительность, на тепловой баланс и т.д.;
химический состав концентрата влияет на химический состав получаемого продукта - огарка, на химический состав образующихся газов и т.д.;
гранулометрический состав концентрата - эта характеристика введена в связи с особенностью процесса, а именно значительным пылевыносом, сопровождающим процесс обжига, который может достигать до 99% вообще, а для конкретного процесса и конкретного объекта управления составляет 38%, в условиях УК МК АО "Казцинк" печи "КС-5", унос фракций до 0,047мм.
Состояние входного материального потока по воздуху будет характеризоваться следующими входными переменными: расходом дутья, концентрации кислорода в газовой фазе, давлением в воздушной коробке.
Такое выделение входных переменных основывается по следующим причинам.
Расход дутья влияет на скорость ведения процесса обжига, температурный режим печи, одновременно он должен обеспечивать псевдоожиженное состояние слоя цинкового концентрата с наложенными на него ограничениями, а именно линейная скорость истечения воздуха из сопел должно быть выше или равной минимально необходимой с одной стороны и быть ниже предельно допустимой с другой стороны, при котором слой переходит во взвешенное состояние. Расход воздуха составляет 13000 м3/ч, линейная скорость воздуха 0,1м/сек. Переменная по давлению также влияет на гидродинамический режим работы печи и составляет 1100мм вод. ст. или 10,786 кПа. Введение переменной концентрации кислорода в газовой фазе, характеризующий материальный поток по воздуху вызвано зависимостью скорости процесса окисления от концентрации кислорода, чем выше процентное содержание кислорода в дутье, тем меньше требуется времени для десульфаризации концентрата. На концентрацию кислорода наложено ограничение - процентное содержание которого недолжно превышать 50-60%. Еще одним входным материальным потоком является подача воды, которая характеризуется переменной расхода. Такое выделение связано с особенностью процесса обжига. Как уже отмечалось ранее, процесс обжига сульфидных цинковых концентратов является автогенным, необходимая энергия для ведения процесса выделяется в результате протекания химических реакций, основная из которых:
ZnS+1.5O2→ZnO+SO2+Q
Эта реакция является экзотермичной, выделяющееся тепло расходуется на ведение процесса, теряется с отходящими газами и в результате теплообмена. Но остается еще и некоторый избыток тепла, который по условиям процесса должен быть отведен. Отвод тепла обеспечивается подачей воды в кессоны испарительного охлаждения.
Состояние выходных материальных потоков характеризуется некоторой совокупностью выходных переменных, зависящих от входных переменных и возмущающих воздействий. Как уже было отмечено выше, для протекания процесса необходимо и достаточно ввести в объект управления материальные входные потоки. В результате их взаимодействия в реакционном пространстве печи КС, будут протекать следующие химические реакции:
ZnS+1.5O2→ZnO+SO2+Q
ZnO+SO2+0.5O2→ZnSO4+Q
ZnS+3ZnSO4→4ZnO+4SO2-Q
Очевидно, что выходными переменными характеризующими выходные материальные потоки будут являться:
по огарку - количество получаемого огарка, его химический состав.
Твердые продукты обжига распределены следующим образом:
- огарок - 62%, от общего количества;
- пыль - 38%, от общего количества.
Химический состав огарка по основным компонентам:
- цинк кислоторастворимый 97%;
- серы сульфидной до 0,3%.
Химический состав пыли по следующим составляющим:
- цинк кислоторастворимый 90%;
- серы сульфидной 0,3.
Эти выходные переменные выделены, в связи с задачей процесса обжига цинковых сульфидных концентратов, целью которого является получение структурно-свободной окиси в таком состоянии, чтобы она была наиболее благоприятна для проведения последующих стадий переработки технологии и в конечном счете обеспечивало высокие технико-экономические показатели производства в целом.
Отсюда вытекает требования к огарку, которые можно представить в виде ограничений наложенных на химический состав выходного потока. Огарок должен иметь содержание сульфидной серы не более 0,3%, сульфатов не более 4%. Таким образом, особенностью технологических требований, предъявляемых к операции обжига цинковых концентратов, является глубокий обжиг сульфидов цинка. Ещё одной технологической особенностью процесса обжига является получение обжиговых газов с высокой концентрацией сернистого ангидрида, направляемых на получение серной кислоты в соответствующий цех. Следовательно, следующим выделенным материальным потоком будут обжиговые газы, получающиеся в результате протекания процесса. Выходными переменными, характеризующие этот поток будут: