Смекни!
smekni.com

Технология обжига цинковых концентратов в печи кипящего слоя (стр. 5 из 18)

количество получаемых газов 15000м3/час;

концентрация в них сернистого ангидрида 6-12%.

Важнейшей выходной переменной является температура в кипящем слое. От нее зависит скорость десульфаризации, а, следовательно, получение продуктов обжига в количественном отношении, химический состав получаемых продуктов, протекание химической реакции. На значение этой переменной наложены ограничения - температура в КС должна находиться в пределах 950-9800С. Эти ограничения вызваны рядом причин: во-первых, как было установлено в процессе опытов, константа скорости массопереноса возрастает, начиная при 9100С, а затем падает. Следовательно, максимум выхода оксида цинка достигается при вышеуказанной температуре.

Кроме того, более высокая температура, чем указанный интервал, способствует нежелательному содержанию примесей в получаемом огарке, в результате более интенсивного протекания побочных химических реакций. Скорость же основной химической реакций - окисления сульфида цинка, при более высокой температуре весьма незначительно влияет на скорость протекания процесса. Температура более низкая, чем указанный интервал (950-9800С) имеет существенное влияние на скорость обжига, так как ход процесса будет лимитироваться уже кинетикой и определяется ее законами.

Возмущающими воздействиями, действующими на объект управления по выходному материальному потоку будут: влажность концентрата и его удельный вес в определенный момент времени на ленте транспортера.

Основной регулируемой переменной по которой строится автоматическая система управления, является температура КС. Для регулирования температуры необходимо выбрать управляющее входное воздействие по соответствующему каналу. Для процесса обжига в КС выходная переменная - температура зависит от нескольких входных переменных и в общем виде может быть представлено выражением:

T=f (Fк,Fвозд,Cо2,Fводы)

Т - температура кипящего слоя

- расход концентрата

Со2 - концентрация кислорода

Fвозд - расход воздуха

Fводы - расход воды

Однако в результате изучения процесса был сделан вывод о том, что в регулировании температуры процесса обжига цинковых концентратов, единственным каналом по которому можно осуществлять регулирование, является канал "расход концентрата - температура слоя". Этот вывод последовал из предположений, что рассматриваемый объект является реактором идеального перемешивания.

К этому же выводу можно прийти в результате размышлений: если допустить, что регулирование температуры ведется по каналу "расход воздуха - температура", то при постоянном гранулометрическом составе увеличение расхода воздуха вызывает увеличение линейной скорости воздуха, что приводит к значительному пылевыносу. При уменьшении расхода воздух подаваемого в печь, слой концентрата может не перейти в псевдоожиженное состояние. Очевидно, что в обоих случаях будет иметь место нарушение гидродинамического режима работы печи кипящего слоя.

Регулирование по каналу "концентрация кислорода - температура" - нецелесообразно, так, как известно предельно-допустимое значение концентрации кислорода, которое может задаваться заранее.

Регулирование температуры в печи по каналу "расход воды - температура" оказывается менее эффективным, так, как по этому каналу статистический коэффициент передачи тепла ниже, чем по каналу "расход концентрата - температура". Следуя рекомендациям в литературе, выбираем управляющее воздействие, для которого коэффициент усиления будет максимальным среди всех управляющих воздействий, влияющих на рассматриваемую переменную, а отношение t/Т минимальным. Оставшиеся неиспользованные управляющие воздействия будем поддерживать на определенном уровне.

Таким образом, температурный режим печи устанавливается и регулируется изменениями расхода загружаемого в печь сульфидного цинкового концентрата.

2.2 Современное состояние автоматизации процесса обжига в КС

При окислительном обжиге сернистого сырья с полным выжиганием серы оптимальным было бы регулирование концентрации сернистого ангидрида в обжиговых газах путем изменения расхода загружаемого сырья и регулирование температуры кипящего слоя путем изменения отъема избыточного тепла; при этом расход дутья (воздуха) и давление под сводом автоматически стабилизируются независимыми регуляторами.

В связи с тем, что требуемого диапазона регулирования отъема тепла в печах с температурой в пределах 700-10000С технически эффективными средствами достигнуть не удается, на цинковых заводах страны внедрены схемы с регулированием температуры обжига изменением расхода загружаемого сырья; при этом концентрация сернистого ангидрида в обжиговых газах остается неуправляемой. Благодаря большим коэффициентам взаимосвязи между концентрацией сернистого ангидрида в газах температурой обжига при постоянстве отвода избыточного тепла практически колебания содержания сернистого ангидрида в отходящих газах при работе автоматического регулятора температуры не превышают 0,6-1,0%.

Все контрольно-измерительные приборы, самопишущие и показывающие, со всех печей вынесены на общий пульт управления. На основании показаний приборов мастер или старший обжигальщик с пульта управления руководит процессом.

Контролю и автоматизации подвергаются следующие узлы:

1. автоматическое регулирование и регистрация температуры в кипящем слое;

2. автоматический контроль и регистрация давления;

3. автоматический контроль и регистрация количества подаваемого в печь воздуха;

4. автоматическое регулирование подачи концентрата в бункера печей;

5. регистрация давления воздуха перед печью;

6. дистанционное управление и блокировка электродвигателей оборудования обслуживающего печь КС.

Для питания аппаратуры контроля и автоматики требуется переменный ток 220 и 127в, а также постоянный ток 220в. Для получения постоянного тока электротехнической частью предусмотрено два мотор-генератора, которые питают электродвигатели ленточных питателей, электромагниты самоочищающихся фильтров и схемы сигнализации.

Внедрение автоматизации значительно облегчает обжигальщикам обслуживание печи. Производительность труда на печах возрастает в 1,5-2 раза по сравнению с ручным управлением.

Обслуживание автоматических линий ведется электрослужбой цеха.

Автоматическое регулирование и регистрация температуры в кипящем слое

Температура измеряется хромельалюмелевыми термопарами в десяти точках (в семи точках кипящего слоя, одна - под сводом печи и две точки на входе газа в циклоны), показания термопар передаются на самопишущий двенадцатиточечный (или шеститочечный) потенциометр ФЩЛ5.

Автоматическое регулирование температуры производится изменением количества поступающего в печь концентрата (топлива). Измерительным элементом регулятора служит хромельалюмелевая термопара, устанавливаемая в верхней части кипящего слоя печи. Термопара работает с промышленным компьютером фирмы "SIEMENS", передающим управляющий сигнал на преобразователь частоты VLT, к которому подключен электродвигатель ленточного питателя. Диапозон частоты преобразователя VLTот 0 до 200 Гц, что дает возможность управлять скоростью вращения электродвигателя от 0 до 2000 об/мин и выше. Рабочий диапазон скорости вращения электродвигателя ленточного питателя от 450 до 1600 об/мин.

Таким образом, автоматически в зависимости от температуры скорость движения ленточного питателя, подающего концентрат, будет меняться в нужных пределах. Также предусматривается возможность дистанционного управления скоростью движения ленточного питателя. Для этого на пульте управления установлен ручной задатчик скорости. Сигнализация о работе всех питателей выведена на мнемосхему пульта управления.

Схема автоматического регулирования температуры не связывается с узлом регулирования расхода воздуха, подаваемого в печь ибо при узких пределах регулирования расхода концентрата (при практически стабильном технологическом режиме обжига) нет нужды в таком сложном регулировании.

Автоматический контроль давления газа под сводом печи

Давление под сводом печи контролируется самопишущим прибором типа РП-160 со шкалой 0±25 мм вод. ст. присоединенным к первичному прибору типа "Сапфир-22ДИВ". Регулирование давления газа под сводом печи может производиться дистанционно: кнопками, установленными на щите управления, степенью открытия или закрытия дросселя в газоходе перед эксгаустерами.

Регулирование и регистрация подаваемого в печь воздуха

Расход воздуха на печь кипящего слоя контролируется самопишущим расходомером типа "РП-160" со шкалой 0-20000 м3/ч. Для регулирования расхода воздуха на патрубке, нагнетающим воздух в печь, установлена дроссельная заслонка, связанная с исполнительным механизмом с помощью которого можно управлять расходом воздуха в зависимости от заданного режима.

Установленные на центральном щите управления кнопки позволяют дистанционно изменять воздушный режим на печах. Дроссель устанавливается на нагнетающем воздушном патрубке перед печью. Все воздуховоды от турбовоздуходувок имеют соединение с общим воздушным коллектором, что дает возможность подавать воздух от любой турбовоздуходувки.

Автоматическое регулирование подачи концентрата в бункера печей КС

Схема предусматривает ручное и автоматическое управление узла загрузки, технологическую, предупредительную и аварийную сигнализацию (звуковую и световую), контроль наличия концентрата от склада по всей нитке и в бункерах печей КС. При автоматическом управлении предусмотрено ручное отключение с любой автоматической нитки. При нормальном режиме автоматическое отключение производится при всех наполненных бункерах печей КС с выдержкой времени от начала остановки питателя до загрузочного транспортера (выдержка времени берется равной времени чистки дисковой дробилки). Автоматическое включение происходит при уменьшении уровня концентрата в одном из бункеров печей КС.