3 – блок вычисления апостериорной вероятности
Здесь
4 – блок определения целесообразности остановки диагностического процесса или его продолжения;
5 – блок выбора следующей проверки объекта; работает, если в блоке 4 принято решение не останавливать диагностику;
6 – блок выработки оценки
Рисунок 2.1 – Структурная схема системы диагностики, реализующей управляемый случайный диагностический процесс
Таким образом, видно, что диагностический процесс, в статистической диагностике трактуется как управляемый случайный процесс с дискретным временем
Таким образом, общая стратегия диагностики
Практика использования статистической диагностики в технике привела к одному общему выводу – ее эффективность прямо пропорциональна знанию указанных функций распределения вероятностей тех случайных величин, которые и делают диагностический процесс случайным (распределение неисправностей, результатов проверок и т.д.). Это привело к постановке задач об адаптации системы диагностики к реальной статистической структуре диагностических данных. Однако большого развития эти работы не получили из-за того, что в конце 60-х годов системы диагностики, как правило, не имели в своем составе ЭВМ, что препятствовало автоматическому накоплению и обработке диагностической информации за достаточно большое число диагностик.
Выше эта задача была упомянута как задача обучения системы диагностики. Речь идет о параметрической оценке тех функций распределения, которые определяют статистическую структуру контролируемых величин объекта (результатов проверок).
Естественно, что сам процесс обучения системы диагностики должен каким-то образом оптимизироваться. Действительно, если обучение слишком затянется, то перейти на статистическую диагностику можно будет, лишь в конце жизненного цикла объекта. Ясно, что в этом случае получаемая выгода будет маленькой. Вместе с тем, если переход на статистические методы будет преждевременным, это также не даст большого выигрыша, а иногда может привести к излишним потерям. Действительно, ведь обучение системы диагностики – это оценка распределения истории диагноза. Если обучающая выборка слишком мала, то и достоверность оценки распределения будет недостаточной. Поэтому и статистическая оптимизация процесса диагностики по такой оценке не будет эффективной.
Выше уже говорилось о том, что оценка распределения включает оценку его вида и оценку соответствующих параметров. Первая задача решается методами непараметрической статистики. Вторая использует, если говорить обобщенно, в основном две разновидности методов – байесовские и небайесовские.
Учитывая опыт эксплуатации однотипных объектов, можно составить определенное мнение о семействах тех распределений, которые встречаются в задачах их диагностики. Как правило, это мультиномиальные и экспоненциальные семейства. Тем не менее, конкретное значение их параметров для объекта конкретного типа остается зачастую неизвестным. Именно поэтому задача оценки неизвестного распределения истории диагноза, в первую очередь, является задачей оценки параметров этого распределения. Также будет приводится обобщение некоторых видов непрерывных распределений, что дает возможность решать параметрическими методами и ряд непараметрических задач.
До тех пор, пока не получена оценка
Будем использовать критерий оптимизации, который максимизирует ожидаемую сумму траекторных потерь и терминального выигрыша. Безусловно, что эквивалентным является и такой подход, когда минимизируется ожидаемая сумма траекторных и терминальных потерь.
Траекторные потери на обучение определяются, в основном, отсутствием статистической оптимизации диагностики до того, как получена оценка
Подобная нормировка составляющих важна уже на этапе решения частных задач обучения. А оптимизации самого процесса обучения выливается в принятие двух решений:
a) об остановке процесса обучения;
b) о выработке оценки
2.2 Определение оптимального момента перехода на статистические методы диагностики
Укажем только, что можно выделить два подхода к оценке параметров распределения – байесовский и небайесовский.
Небайесовский подход можно назвать в какой-то мере классическим, ибо до недавнего времени именно он имел большое распространение. Чтобы проиллюстрировать его, положим, что наблюдаемая контрольная величина имеет распределение с плотностью