– – – – – – – – – Таким образом, такт 12 старой схемы коммутации, заменяется в новой схеме тактом 1234, где фазы 13 и соответственно 24 включаются в одном роторе. Рассмотрим подробнее такт включения 1234 (рис. 7).
Аналогично предыдущим вычислениям получаем: S1234 = 2 2/3 зубцового деления.
Таким образом, полезная энергия шагового двигателя с новой схемой коммутации возросла приблизительно на 70%. При этом за два такта стало включаться вместо пяти фаз (как в ПШД5/80) – семь. Значит, потребляемая энергия тоже возросла примерно на 40%. Но, тем не менее, к.п.д. двигателя с новой схемой включения фаз стал выше, чем со схемой существующего привода.
Эти вычисления выполнены примерно, в виде оценки. Реально, учитывая потери на нагрев замагниченного железа, а также искривление силовых линий магнитного поля и потоки магнитного поля, замыкаемые не по кратчайшему пути, вычисленный результата уменьшится, и мы получим не 70% добавки, а меньше. Но, тем не менее, значимая величина добавки заставляет нас в новом приводе отказаться от старой схемы коммутации и использовать новую.
На практике, при испытании новой схемы коммутации ШД5 в старом приводе ПШД5/80, путем запрограммирования и замены ПЗУ, двигатель быстро начинал нагреваться, в виду того, что увеличились потери, связанные с замагничиванием железа. По-этому рекомендуется длительно не использовать двигатель на полном токе в обмотке (3А). Тем более что различные устройства, где используется шаговый двигатель, не требуют, при обычном режиме работы, большого силового момента двигателя. На полный ток целесообразно включать двигатель при разгоне, что позволяет сократить время на перемещение в заданную точку плоскости в устройствах ЧПУ. Переходить на более низкий ток в обмотке можно автоматически, установив на двигателе терморезистор, вводя тем самым температурный контроль. Таким образом, можно защитить двигатель от перегрева. Тем более что в режиме покоя достаточно иметь статический момент существенно меньший динамических моментов нагрузки. Поэтому здесь тоже можно перейти на меньший ток, тем самым, снизив разогрев двигателя. Гибкость, в управлении током в обмотке возможна, благодаря использованию, в новом приводе, новой схемы стабилизации тока в обмотке, обсуждению которой и посвящается следующий раздел.
2. Управление током
2.1 Управление в существующем приводе
В старом приводе ПШД5/80 питание обмотки двигателя осуществлялось от источника напряжения 6 V. Такое значение напряжения питания было выбрано из тех соображений, что максимальный ток, который может протечь через обмотку, не будет превышать максимального значения, определенного характеристикой двигателя (3 А). Но при таком питании обмотки, достижение током этого значения будет происходить бесконечно долго. Поэтому, для накачки тока в старом приводе использовалось высокое напряжение питания – 80 V. Принципиальная схема такого стабилизатора тока изображена на рисунке 8.
Таким образом, при подаче на фазу высокого напряжения, ток в ней начинал быстро расти, и ограничивался суммарным активным сопротивлением цепи, которое включало в себя сопротивление шунта (Rш =0.1 Ω), коллекторно – эмиттерные сопротивления открытых транзисторов Т1 и Т2 (RТ1 = RТ2 = 1 Ω), а также, активное сопротивление самой фазы двигателя (Rф = 1 Ω.). Суммарное активное сопротивление этой цепи равно сумме четырех этих сопротивлений (R = 3.1 Ω.). Уравнение этой цепи запишется в виде: