Очистка поверхности от различного рода загрязнений и окислов имеет важное значение при нанесении разнообразных покрытий. Существующие классические методы очистки поверхности - химические, гальванические, пескоструйные, которые не в полной мере удовлетворяют современным требованиям по качеству результата. Ионная очистка поверхности позволяет получать атомночистую поверхность, благодаря чему улучшается адгезия наносимого покрытия с подложкой.
Данный метод очистки осуществляется следующим образом. Ионный источник формирует направленный поток ионов инертного газа, ускоренных до высокой энергии. Они бомбардируют подложку, вызывая её распыление [6].
Распыление наблюдается при энергии ионов Ei выше энергия связи атомов обрабатываемого материала в твердом теле E0 (пороговая энергия). Значения E0 для различных элементов колеблются от единиц до нескольких десятков эВ. При энергиях меньше пороговой распыление отсутствует.
Коэффициент S является количественной характеристикой распыления и равен числу атомов, выбитых одним ионом. Вблизи порога S очень мал (10–5 атомов/ион), а при оптимальных условиях может достигать нескольких десятков. На величину S влияют как параметры бомбардирующих ионов — их энергия, масса, угол падения на образец, так и свойства распыляемого вещества — чистота поверхности, температура, кристаллическая структура, масса атомов вещества. Энергии распылённых частиц колеблются от нескольких долей эВ до величин порядка энергии первичных ионов. Средние энергии распыляемых частиц составляют обычно десятки эВ и зависят от свойств материала мишени и характеристик ионного пучка [7].
Согласно теории Зигмунда [4] для аморфных и поликристаллических материалов для энергий ионов до 1 кэВ коэффициент распыления определяется следующим выражением:
,где Mi и Ma- атомные массы ионов и атомов распыляемого материала, г/моль;
Ei - энергия падающих ионов, эВ;
Esub - энергия сублимации атомов подложки, эВ;
α - безразмерный параметр, зависящий от Mi/Ma.
Рис.2. Зависимость коэффициента α от отношения массы атома распыляемого материала Ma к массе иона Mi [4] .
Зависимость параметра α от отношения Mi/Ma при нормальном падении пучка ионов показана на рис 2.
В табл. 1 приведены значения коэффициентов распыления для некоторых металлов.
Табл.1. Значения коэффициента распыления [9].
Распыляемое вещество | Коэффициент распыления S, атом/ион | |||
при Еi=600 эВ | при Еi =1 кэВ | |||
Аr | Кr | Аr | Кr | |
Сu | 2,3 | 2,8 | 3,2 | 3,4 |
Fe | 1,3 | 1,2 | 1,4 | 1,4 |
Мо | 0,9 | 1,1 | 1,1 | 1,2 |
Ni | 1,5 | 1,5 | 2,1 | 1,7 |
Зависимость коэффициента распыления от энергий бомбардирующих ионов (рис.3) имеет максимум при значениях энергии порядка 101-103эВ. Уменьшение коэффициента распыления при повышенных энергиях ионов связано с большой глубиной проникновения частиц в твердое тело и меньшим выделением энергии в поверхностном слое.
Рис. 2. Зависимость коэффициента распыления Си от энергии бомбардирующих ионов Кr+ [8].
При расчёте распределения толщины плёнки, формируемой методом осаждения распыленного материала из кольцевого испарителя, сделаем следующие допущения:
· распыленные атомы распределяются в пространстве по закону косинуса;
· распыленные атомы не сталкиваются друг с другом и с атомами рабочего газа;
· распыленные атомы осаждаются в точке соударения с подложкой.
В общем случае толщина пленки на единицу площади в произвольной точке подложки описывается выражением [5]:
h=Vtcosφcosψ/πr2 , (1)
где V - скорость распыления мишени;
φ - угол между нормалью к поверхности распыления и направлением распыления;
ψ- угол между нормалью к поверхности подложки и направлением осаждения;
r - расстояние от элемента распыления до точки осаждения;
t - время распыления.
Модель процесса напыления плёнки будем строить для случая, показанного на рис. 4, когда мишень 1 и подложка 2 параллельны и соосны. В этом случае угол распыления равен углу конденсации, т.е. φ = ψ.
Рис.4. 1-мишень; 2-подложка;
Распределение распыленного материала по подложке является центрально-симметричным, и описываться одной переменной - расстоянием от центра l. Угол φ = ψ можно выразить через расстояние от мишени до подложки H и расстояние от точки распыления атома до точки осаждения r: cosφ=H/r. Подставляя в исходное уравнение (1), получим:
h=VtH2/πr4, (2)
Выразим расстояние r через элементы l, R, d, H:
l=R+d;
d=l-R;
r2=H2+d2;
r2=H2+l2+R2-2lR;
подставим в уравнение (2) и получим конечное выражение для толщины покрытия:
h=Vt H2/π(H2+l2+R2-2lR)2.
Выразим h в относительных единицах:
h/h0=(Vt H2/πh0(H2+l2+R2-2lR)2,
где h0 – толщина покрытия в центре подложки (l=0), при H=20мм.
Рис.5. Распределение толщины покрытия, при H=20мм; R=10мм; V=1мм/ч; t=1ч.
Примем за максимально допустимую степень неравномерности толщины покрытия на подложке Dmax=20%. Как видно из рис.5, область равномерного распределения составляет L=14мм. Таким образом, для нанесения покрытия с равномерным распределением по толщине на изделия протяжённостью более 14 мм необходимо использовать несколько распылителей. Из соображений, что на установке будут обрабатываться образцы длиной не более Lобр=120мм, рассчитаем такое положение двух магнетронов относительно образцов и друг друга, при котором обеспечивается приемлемая степень однородности распределения толщины покрытия. Т.к. радиус распыляемых мишеней составляет R=20мм, следовательно, минимальное расстояние, на которое можно поместить магнетроны, Δlmin=40мм, а максимальное Δlmax =120мм.
Результаты расчётов представлены на рис. 6, 7, 8.
Рис.6. Распределения толщины покрытия при Δl=40мм (DH=20=96%, DH=40=76%, DH=60=62%).
Рис.7. Распределения толщины покрытия при Δl=80мм (DH=20=92%, DH=40=52%, DH=60=23%).
Рис.8. Распределения толщины покрытия при Δl=120мм (DH=20=98%, DH=40=81%, DH=60=52%).
Рис.9. Оптимальное распределение, Н=60мм, Δl=83мм.
При Н=60мм, Δl=83мм получим D=20%, L=120мм, следовательно, распределение с данным набором параметров Н и Δl (рис.9) является оптимальным, т.к. результаты удовлетворяют условиям задачи (D≤Dmax; L≥Lобр;Δlmin≤ Δl≤ Δlmax).
Эксперименты были проведены на установке для нанесения покрытий (рис.11), состоящей из вакуумной камеры 1, шести плоских магнетронов 2, двух ионных источников холловского типа 3, манипулятора 4 и экрана 5.
Образцы закрепляются на электрически изолированные держатели манипулятора, на которые можно подавать отрицательный потенциала до 1 кВ относительно заземлённой камеры. Манипулятор обеспечивает вращение образцов со скорость 2об/мин относительно оси вакуумной камеры, причём вокруг своей оси держатели совершают полный оборот в пределах сектора с наиболее интенсивным потоком распылённых атомов мишени. Камера помещена на вакуумный стенд 6 с безмаслянной откачкой. Для форвакуумной откачки используется пластинчато-роторный насос 2НВР-90Д (быстродействие 25л/с), для достижения предельного давления (4,27·10-7 Торр) - турбомолекулярный насос ТМН-500 (быстродействие 500л/с). Рабочий газ напускается в объем камеры через ионные источники, газовый поток контролируется многоканальной электронной системой BronkherstHIT-TECH. Для электрического питания магнетронов используется шестиканальный блок с возможностью электронного документирования параметров разряда магнетронов и автоматической блокировки работы устройств в случае нештатной ситуации. Он размещается совместно с двумя блоками питания источников ионов и блоком смещения напряжения в стойке управления.
В магнетронах используются постоянные Sa-Co магниты с напряженностью поля на полюсах 0,4 Тл. Распыляемые мишени представляют собой диски диаметром 40мм и толщиной 3-4мм. Технологический цикл обработки изделий включает в себя этап чистки мишеней. Для того чтобы распылённый при этом материал не осаждался на образцы используется экран 5. Фланцы камеры, магнетроны и источники ионов охлаждаются проточной водой.
Технические характеристики газоразрядных устройств, используемых в данной установке представлены в табл.2.
Табл.2. Технические характеристики магнетрона и источника ионов.
Ток разряда, А | Напряжение горения разряда, В | Минимальное рабочее давление, Торр | |
Магнетрон | 0-0,3 | 150-450 | 2·10-3 |
Исочник Холла | 0-0,5 | 300-500 | 10-3 |
В качестве образцов для данного эксперимента использовали 12 трубок из конструкторской стали со средней длиной l=10 мм, внешним диаметром Dобр=6мм и внутренним dобр=3,7мм, закреплены на шпильке диаметром Dш=3мм и зажаты гайками с двух сторон.