Смекни!
smekni.com

Перспектива развития газовой промышленности (стр. 5 из 7)

2.4.1 Изоляция газопроводов

Грунт в микрорайоне со средней коррозийной активностью. Все стальные газопроводы, укладываемые в грунте в пределах городов, должны иметь защитные покрытия весьма усиленного типа в соответствии с требованиями действующих нормативно-технических документов. В зависимости от используемых материалов, полимерные защитные покрытия могут быть: мастичные, экструдированные из расплава, оплавляемые на тубах из порошков, из липких наклеиваемых на трубу лент. Защитные покрытия на стальные трубы наносят механизированным способом в условиях производственных баз строительно-монтажных организаций или в трассовых условиях с использованием специальных механизмов.

В данном проекте применяют защитные покрытия, весьма усиленного типа на основе битумных мастик. В зависимости от типа мастики, применяют покрытие двух видов: покрытие на основе битумно-атактической и битумно-резиновой мастики толщиной 9 мм и покрытие на основе битумно-асболимерной мастики толщиной 7,5 мм.

2.4.2 Выбор и обоснование типа электрохимической защиты

Коррозия металла - это разрушение металлических поверхностей под влиянием химического или электрохимического воздействия окружающей среды. Почвенная коррозия является результатом взаимодействия металла с разными агрессивными растворами грунта, причем роль электродов играет металл, а роль электролитов грунт. Существуют следующие виды активной защиты трубопроводов: протекторная, дренажная, катодная.

Электродренаж - отвод блуждающих токов попавших на газопроводы, обратно к их источникам. Отвод производится через специальный провод , соединяющий защищаемый газопровод с источником тока. Различают прямой, поляризованный и усиленный дренаж. Дренаж является основным видом защиты от электрохимической коррозии. Одна дренажная установка может защитить г/п длиной6 км.

Протекторная защита — заключается присоединении к защищаемому сооружению металл. пластин или стержней (протекторов), обладающих более низким электропотенциалом чем металл. Сооружения. Применяют магниевые, аллюминевые, цинковые протекторы и их сплавы.

Наиболее эффективным методом является катодная защита, которая заключается в искусственном создании специального источника постоянного тока отрицательного потенциала. При этом защищаемый газопровод присоединяют к отрицательному плюсу. Эффективность действия катодной защиты зависит от состояния изоляционных покрытий. Так как в данном проекте не предусмотрено электрофицированного транспорта, рекомендуется применение катодной защиты.

Принцип действия: ток отположительного полюса источника через соединительный кабель и анодное заземление проходит в почву, из почвы через дефектные места в изоляции ток проникает в газопровод и по дренажному кабелю идет к отрицательному полюсу источника, таким образом создается замкнутая цепь, по которой ток идет от анода через землю к газопроводу и далее по трубе к отрицательному полюсу источника.

При этом происходит постепенное разрушение анода, что обеспечивает защиту газопровода от коррозии под влиянием его катодной поляризации. Заземлители катодных установок размешают от защищаемого газопровода и смежных с ним металлических сооружений на расстоянии 15-100 м в зависимости от величины тока стекающего с заземлителя. При катодной защите надо иметь ввиду, что если неправильно выбрать место установки и в поле действия окажутся другие металл. сооружения, то они могут быть разрушены токами этой установки. Катодную защиту целесообразно применять для защиты газопроводов от почвенной коррозии.

2.5 Расчет катодной защиты

2.5.1 «Коррозионные измерения на подземных стальныхгазопроводах

Электроизмерения на газопроводе проводят приборами, которые присоединяют к специальным проводникам. Контрольно-измерительные приборы необходимо устанавливать на г/п через каждые 200-500м. Оценка опасности коррозии газопроводов блуждающими токами складывается после определения показателей:

- наличие блуждающих токов в земле

- Разность потенциалов между газопроводом и землей

- Разность потенциалов между газопроводом и рельсами электрифицированного транспорта др. смежными подземными сооружениями

- Величина и направление тока в газопроводе

- Плотность тока, стекающего из газопровода в землю.

Критериями опасности коррозии подземных стальных трубопроводов являются: коррозионная активность среды по отношению к металлу сооружения (почвенная коррозия), опасное воздействие постоянного и переменного тока(коррозия блуждающими токами).

Коррозионная активность грунта по отношению к стали характеризуется удельным электрическим сопротивлением грунта определяемым в полевых и лабораторных условиях. Удельное

Электросопротивление грунта определяется для выявления участков трассы прокладки трубопровода с высокой коррозионной активностью грунта, требующей защиты от коррозии и расчета катодной и протекторной защиты. В полевых условиях определяют непосредственно на местности по трассе подземного г/п без отбора проб грунта.

В качестве аппаратуры применяют измерители сопротивления типа Ф-416, М-416, МС-8, в качестве электродов - стальные электроды длиной 250-350 мм и диаметром 15-20 мм.

Измерения производят в период отсутствия промерзания грунтов на глубине заложения подземных сооружений, с интервалом 100-500 м. На действующей сети измерение проводят через каждые Н)0-200 м. Глубина забивки электрода в грунт не более 1/20 расстояния между электродами.


2.5.2 Расчет поверхности трубопроводов, расположен на территории микрорайона

Определяем параметры катодной защиты в микрорайоне.

Исходные данные для расчета:

- Генплан микрорайона м 1:500 нанесенным газопроводом и подземных коммуникаций.

- площадь микрорайона

а = 185

в = 127,5

S^ = 2,3 га

Газопровод Водопровод Теплотрасса
Ду L Ду L Ду L
57 242,5 d200 432,5 125x2 850
76 167,5 d100 95 70х2 180

3. На территории микрорайона расположены : газопроводы среднего и низкого давления, водопровод и теплотрасса.

Расчет:

1. Определяем площадь поверхности всех трубопроводов в микрорайоне.

S=

2. Определяем суммарную площадь поверхности всех трубопроводов электрически связанных между собой.


3. Определяем удельный вес каждого из трубопроводов в общей массе сооружений.

4. Определяем плотность поверхности каждого из трубопроводов приходящиеся на единицу поверхности территорий.

газопровод

водопровод

теплотрасса

2.5.3 Расчет суммарного защитного тока

Цель расчета: Определить параметры катодной станции, необходимые для территории микрорайона в зоне действий установок ЭХЗ.

Данные для расчета: плотность поверхности защищаемых трубопроводов; коррозийная активность грунта.

Расчет:

1. Определяем среднюю плотность тока, необходимого для защиты трубопроводов.


I=30-(100в +128т+34d+3l+0,6f+5p)×

;

I=30(100×26,6+128×65,9+34×29,75+3×107,75+0,6×266,53+5×32)×

;

2. Определяем значение суммарного защитного тока, необходимого для обеспечения катодной поляризации подземных сооружений, расположенных в данном микрорайоне.

I=1,3×I×∑S

I=1,3×0,017×1131,3=25А

3. По плану микрорайона находим место расположения катодной станции и анодного заземления. Определяем удельную плотность сооружений.

4. Определяем радиус действия катодной установки

;

;

Полученный радиус действия катодной установки охватывает всю территорию микрорайона.

5. По таблице приложения №2 “Сборника нормативных документов” для тока I=17A, p=32 Ом.м , выбираем анодное заземление из чугунных труб – Ду 150, L =12м, количество n =4 шт., сопротивление растеканию

=0,75м. Рассчитываем сопротивление дренажного кабеля АВРБ 3×16, длинной не более 100м, сопротивление R= 0,0646 Ом.

6. Определяем выходное напряжение катодной станции.

коррозия электролитический газопровод трубопровод

По силе тока и напряжению подбираем катодную станцию типа ВКЗМ-0,6-24-У1, с учетом 30% запаса на развитие сети.

Техническая характеристика.

1) Номинальный выходной ток, А20.

2) Номинальное выходное напряжение, В16,3.

3) Номинальная выходная активная мощность, кВ 0,6.

4) Полная потребляемая мощность, кВа, не более 1,0.