Министерство образования и науки РФ
Федеральное агентство по образованию
Пермский государственный технический университет
Кафедра ЭАПУ
КУРСОВАЯ РАБОТА
Тема: "Расчет привода ТП-Д с реверсом по цепи возбуждения"
Курс IV, группа ЭАПУ-07-1
Студент Бояршинов М. М.
Преподаватель Седунин А. М
Содержание
Исходные данные
Введение
Обоснование выбора привода
Разработка силовой схемы электропривода
Расчёт и выбор электрооборудования силовой схемы
Составление и расчет параметров структурной схемы модели электропривода
Список использованной литературы
Исходные данные
1. Тип электропривода ТП-Д с реверсом поля (возбуждения).
2. САУ подчиненного регулирования с обратными связями по току.
3. Двигатель:
П2 Pном = 55кВт
UЯ = 440В
UВ = 110/220В
IЯ = 90А
IВ = 10А
IСТ = 85А
ФН = 0,67Вб
ТЯ = 0,04с
RЯ = 0,035с
Вес колонны G = 10т
4. Функциональная схема системы регулирования электропривода роторного стола.
ZZ1, ZZ2 – сельсинный командоаппарат; ФВ – фазочувствительный выпрямитель; ЗИ – задатчик интенсивности; РМР – регулятор мощности; УОР – узел ограничения; РЭР – регулятор ЭДС; РТР – регулятор тока; ЯГР – ячейка гальванической развязки; ДЭ – датчик ЭДС; ДТР – датчик тока; ТПЯР – тиристорный преобразователь по току якоря; ТПВР – тиристорный преобразователь по току якоря; ТПВР – тиристорный преобразователь по току возбуждения; РТВ – регулятор тока возбуждения; МР – электродвигатель роторного стола; ДНР – датчик напряжения; КР – контактор ротора; ОВМР – обмотка возбуждения электродвигателя роторного стола.
Введение
В настоящее время многие выполняемые работы в различных отраслях деятельности человека не мыслимы без электропривода.
Современные автоматизированные электроприводы представляют собой сложные динамические системы, включающие в себя различные линейные и нелинейные элементы (двигатели, генераторы, усилители, полупроводниковые и другие элементы), обеспечивающие в своем взаимодействии разнообразные статические и динамические характеристики.
Большинство рабочих машин, агрегатов, технологических линий и комплексов приводится в движение электрическим приводом.
Однако функции электропривода не ограничиваются только преобразованием энергии - они существенно шире. Каждая рабочая машина нуждается в управлении, нужно включать и выключать двигатели, приводящие в движение рабочие органы машины, изменять скорость и усилие на рабочих органах в соответствии с условиями ведения технологического процесса, осуществлять необходимые защиты и блокировки, обеспечивающие безаварийную работу машин.
В тех случаях, когда рабочая машина или технологический комплекс имеет несколько рабочих органов, каждый из которых приводится в движение своим электроприводом, в задачу управления входит согласование движений рабочих органов в соответствии с требованиями технологического процесса.
Вторую функцию электропривода можно определить как управление движением исполнительных органов рабочей машины, причем это управление может осуществляться вручную с элементами автоматики или автоматически.
Сочетание двух функций электропривода: преобразование электрической энергии в механическую и управление параметрами механической энергии (мощность, усилие, крутящий момент, скорость, ускорение, путь и угол перемещения) с целью рационального выполнения технологического процесса, выполняемого рабочей машиной, определяет назначение и роль электропривода в машинном производстве.
Не стоить забывать, что важная роль принадлежит электроприводу в создании энергосберегающих технологий. Многие технологические процессы связаны с большими затратами электрической энергии, однако не всегда эти затраты носят производительный характер.Электропривод - главный потребитель электрической энергии. В развитых странах на долю электропривода приходится свыше 60% всей вырабатываемой электроэнергии.электропривод двигатель возбуждение реверс
Целью курсового проектирования является систематизация, расширение и углубление теоретических знаний студентов. В ходе курсового проектирования студенты приобретают опыт самостоятельного решения задач проектирования, а также получают навыки пользования нормативной и справочной литературой.
Обоснование выбора привода
Развитие силовой полупроводниковой техники определило широкое применение статических тиристорных преобразователей в различных системах электроприводов и, в частности, в электроприводах рудничных подъемных установок. Свойства электроприводов с тиристорными преобразователями в значительной степени зависят от свойств самих тиристоров — основных силовых элементов.
- Тиристоры характеризуются достаточно высокими допустимыми напряжениями и токами, сравнительно большими интервалами рабочих температур: от минус 60—50 до плюс 100 — 150 0 С.
- Тиристоры имеют малое время включения: после приложения к управляющему электроду кратковременного положительного сигнала оно составляет 1—4 мкс. Время запирания тиристоров 10—20 мкс. Время восстановления управляемости тиристоров после окончания протекания тока составляет 25—35 мкс, что в 10 раз меньше времени восстановления ионных вентилей.
- Тиристоры размещаются в герметичном сварном корпусе простой конструкции, обладающем высокой механической прочностью, стойкостью к воздействию ударных и вибрационных нагрузок, возможностью работать при любом положении в пространстве.
Применение тиристорного электропривода обусловливает целый ряд преимуществ:
1) Благодаря широкой номенклатуре изготовляемых полупроводниковых элементов упрощается производство ТП и могут быть сокращены затраты на ТП в связи с постоянно снижающейся стоимостью тиристоров.
2) Экономия меди и черных металлов при изготовлении тиристорного агрегата и трансформатора.
3) Снижение затрат на строительно-монтажные работы тиристорного электропривода, для которого не требуются громоздкие фундаменты, мощные грузоподъемные средства и большая площадь помещений (для тиристорного электропривода на 20-40 % меньше, чем для других преобразователей).
4) Снижение эксплуатационных затрат, в основном за счет сокращения расходов на электроэнергию и обслуживание преобразователя.
5) Большая потенциальная надежность по сравнению с электроприводом Г—Д за счет меньшего числа электрических машин и применения статического ТП в виде шкафных или встраиваемых конструкций блочно-модульного исполнения с хорошей доступностью к элементам для быстрого устранения неисправностей. Более простое осуществление резервирования и взаимозаменяемости блоков ТП, больший срок службы ТП при условии применения защитных мероприятий и устройств по ограничению тока, напряжения и других параметров.
Ряд отрицательных качеств электропривода ТП—Д обусловлен отрицательными свойствами самих тиристоров, основные из которых:
- низкая перегрузочная способность по току вследствие малых размеров р-n-перехода;
- относительно небольшая стойкость к импульсным перегрузкам по току в связи с малой теплоемкостью;
- чувствительность к перенапряжениям;
- ограниченные скорости нарастания тока и напряжения;
- большой разброс параметров (ток управления, время включения, ток утечки в пределах одного класса и группы), что ухудшает параллельную работу тиристоров, их поведение в аварийных режимах;
- кумулятивность — накапливание ухудшения состояния структуры перехода при повторных перегрузках определенной длительности;
- подверженность при определенных условиях аварийным пробоям.
Разработка силовой схемы привода
На рисунке 2 представлена упрощенная принципиальная схема привода системы ТП-Д с реверсом по возбуждению.
Рис.1 Упрощенная принципиальная схема привода ТП-Д с реверсом по цепи возбуждения.
Обозначения, принятые в схеме:
Тр – трансформатор,В – выключатель,А – автоматический выключатель,НТП – нереверсивный тиристорный преобразователь,РТП – реверсивный тиристорный преобразователь,СИФУ – система импульсно-фазового управления,АГТ – автомат главного тока,Ш – шунт,ДР – сглаживающий дроссель,Я – якорь машины постоянного тока,ОВ – обмотка возбуждения,РС – разрядное сопротивление,ТГ – тахогенератор.
В основе привода имеется двигатель постоянного тока независимого возбуждения, якорь которого получает питание от нереверсивного преобразователя. В соответствии с этим, возникает необходимость установки в цепь якоря сглаживающего дросселя для снижения пульсаций выпрямленного тока.
Реверс привода осуществляется изменением направления магнитного потока, поэтому применяется реверсивный преобразователь в цепи возбуждения. Оба преобразователя – управляемые (якорный – для регулирования скорости привода изменением напряжения на якоре; в цепи возбуждения – для реверсирования привода (с использованием форсировки) и для ослабления тока возбуждения во время паузы).
Трансформатор Тр предназначен для питания преобразователей, они обеспечивают согласование преобразователей с сетью по уровню напряжения и их потенциальную развязку. СИФУ предназначены для управления тиристорными преобразователями.
Автомат главного тока предназначен для разрыва цепи якоря во время отключения привода и защиты двигателя от перегрузки.
Контроль параметров привода осуществляется с помощью тахогенератора (контроль скорости) и шунтов (контроль тока якоря и тока возбуждения).
Коммутационные аппараты В и А предназначены для отключения от сети соответствующих элементов силовой схемы. Разрядное сопротивление служит для защиты обмотки возбуждения от перенапряжения при коммутации.