Смекни!
smekni.com

Загальні поняття про якість виробів та основні її показники (стр. 6 из 6)

Функція a(t) формується законом Гаусса з його параметрами s і

, які залежать від точності виду обробки і технологічної системи, і законом рівної ймовірності з параметрами:

,

на величину поля розсіювання якого впливає швидкість та тривалість процесу (у випадку зношування інструменту ℓ визначається питомим зношуванням і тривалістю різання).

Таким чином, функція a(t) відображає не тільки точність, але і тривалість процесу обробки.

Функцію a(t) можна розглядати як результат рівномірного зміщення в часі вершини кривої Гаусса із середнім квадратичним σ на величину параметра 2ℓ кривої розподілу закону рівної ймовірності. На рис. 12 показано криву a(t), яка для деякого моменту часу t виражається формулою:

,(24)

де sσ – середнє квадратичне відхилення закону нормального розподілу, який визначає функцію a(t);

a0 – середнє арифметичне значення розміру у початковий момент часу.

Рис. 1 Крива функції а(t)

Форма кривої розподілу функції a(t) залежить від параметра λa, який визначається за формулою:

.(25)

Лінійну функцію a(t) можна подати у вигляді:


.(26)

Середнє арифметичне значення розміру функції дорівнює:

,(27)

а середнє квадратичне відхилення sa функції a(t):

.(28)

На рис. 13 подано сім’ю нормованих кривих розподілу лінійної функції a(t) при різних значеннях λa.

Рис. 13. Сім’я нормованих кривих розподілу лінійної функції a(t)при різних значеннях λа

Усі криві симетричні, мають плоскі вершини і змінюють свій вигляд від кривої 1 нормального розподілу Гаусса (при ℓ ® 0 і λa= 0) до прямокутника 2 розподілу рівної ймовірності при λa = ¥ і s® 0.

Поле розсіювання Δp розмірів при функції розподілу a(t) залежить від параметра λa наступним чином:

λa 3 6 10 24
Δp 4,74σa 4,14σa 3,76σa 3,56σa

При виконанні технологічних процесів доводиться зустрічатись також зі зміною величин випадкових факторів, коли питома вага деяких із них за окремі проміжки часу підсилюється, починає домінувати над іншими, наприклад, збільшення коливання величини припуску на обробку через включення в партію заготовок, одержаних із значними коливаннями припуску внаслідок похибок початкових заготовок. При цьому форма кривої розподілу не змінюється, але змінюється величина поля розсіювання.

4.5 Композиції законів розподілу і підсумовування похибок

При обробці заготовок на точність їх розмірів часто одночасно діють різні фактори, які викликають появу як випадкових похибок, створюваних за різними законами, так і систематичних або змінних систематичних похибок. У подібних випадках закон розподілу розмірів оброблюваних заготовок представляє собою композицію декількох законів розподілу.

Систематичний постійний фактор (похибка) на форму кривої розподілу не впливає, зсуває центр групування відносно середини поля допуску або відносно розрахункового настроювального розміру на свою величину, в бік свого знака (рис. 14, б, в). Прикладом може бути розвертання отворів у однієї половини партії заготовок розверткою діаметром 20 мм, у другої – діаметром 20,08 мм (Δсист. = ±0,08 мм). Аналогічна ситуація буде при двох різних настроюваннях технологічної системи. У таких випадках поле сумарного розсіювання розмірів заготовок визначається з виразу:

Δр = 6s + Δсист.(29)

Якщо при цьому крива розсіювання будується за значеннями вимірювань без врахування систематичної похибки (наприклад, коли вимірюється вся партія заготовок, оброблених з декількох настроювань), форма загальної кривої розсіювання викривлюється і відрізняється від форми кривої Гаусса (крива має декілька вершин різної висоти відповідно до числа настроювань та кількості заготовок, оброблених з кожного настроювання (рис. 14, в, г)).

При обчисленні сумарної похибки обробки систематичні похибки складаються алгебраїчно, тобто із врахуванням їх знаків. Внаслідок цього результат підсумовування може показати не тільки збільшення, але й зменшення загальної похибки у зв’язку з взаємною компенсацією впливу складових похибок. Наприклад, подовження різця у зв’язку з його нагріванням, що зменшує діаметр обточуваного вала, може скомпенсувати вплив зношування різця, що викликає збільшення діаметра обробки.

Систематична похибка із випадковою похибкою складається арифметично у відповідності з формулою (29).

Випадкові похибки, які не підкоряються закону Гаусса, за відсутності домінуючої похибки підсумовуються геометрично, тобто:

,(30)

де Δ1, Δ2,…,Δn – поля розсіювання випадкових похибок, що підсумовуються;

K1, K2,…,Kn – коефіцієнти відносного розсіювання випадкових величин.


Рис. 14. Зміна форми сумарної кривої розсіювання під впливом систематичної похибки при обробці декількох партій заготовок з піднастроюванням верстата

Коефіцієнт відносного розсіювання Ki показує, у скільки разів відрізняється фактичне розсіяння значень і-ої похибки від величини розсіяння цієї похибки при її нормальному розподілі з тим же значенням.

Для закону нормального розподілу К = 1, для закону Сімпсона К = 1,2, для закону рівної ймовірності К = 1,73.

В теорії ймовірності встановлено, що за відсутності домінуючих похибок, розсіювання сумарної похибки підкоряється закону Гаусса незалежно від законів розподілу складових похибок.

Коли всі похибки, що підсумовуються, підкоряються закону Гаусса (K1 = K2= … = 1,0), поле розсіювання сумарної похибки дорівнює:

.(31)

У звичайних умовах обробки на налагоджених верстатах і за відсутності помітного впливу зношування інструменту розподіл більшості складових похибок підкоряється закону Гаусса і можна було б прийняти К = 1,0. Проте, для того щоб врахувати можливий на практиці відхід розподілу окремих складових від закону Гаусса, в розрахунках за формулою (31) часто приймають (для створення деякої гарантії точності) значення К = 1,2, що відповідає розподілу за законом Сімпсона, тобто:

.(32)

Використана література

1. Балакшин Б.С. Основы технологии машиностроения. – М.: М., 1969. – 559 с.

Бондаренко С.Г. Розмірні розрахунки механоскладального виробництва. – К. 1993. – 544 с.

3. Маталин А.А. Технология машиностроения. – Л. – М., 1985. – 496 с.

4. Методичні вказівки і завдання для індивідуальної роботи з основ технології машинобудування під контролем викладача. – ЧІТІ, 1993.

5. Основы технологии машиностроения / Под ред. В.С Корсакова. – М.М., 1977. – 416 с.

6. Руденко П.А. Теоретические основы технологии машиностроения: Конспект лекций. – Чернигов, 1986. – 258 с.

7. Солонин И.С. Математическая статистика в технологии машиностроения. – М.М., 197 – 216 с.

8. Технология машиностроения (специальная часть). / А.А. Гусев, Е.Р. Ковальчук., И.М. Колесов и др. – М.М., 1986. – 480 с.