Смекни!
smekni.com

Зварювальний станок AKS 560 (стр. 2 из 3)

контроль температури . Комплект складається з:

– В якості датчика та перетворювача вхідного сигналу слугує термопара.

– В якості впливу на схему управління використовую вихід аналогового сигналу що подається до нагрівного елементу через регулятор Термодат-11М3


Рис. 8. Функціональна схема станка.

2.3 Розробка і розрахунок циклограми робочих органів

Схемою електричною принциповою передбачено автоматичне вмикання тену за допомогою регулятора температури релейним законом управління


Рис.9 Циклограма роботи

Час на підйом та опускання траверси

2.4 Розробка циклограми вхідних та вихідних елементів

Вхідні елементи

SB1 – Загальний стоп

SB2 – Вмикання установки і запуск пневмодвигуна

SB3 – Рух суппорта вправо

SB4 – Рух суппорта вліво

SB5 – Режим зварювання

SP – датчик контролю тиску

Tнорм – Датчик температури тену

QF2 – автомат несправності двигуна М1

QF3 - автомат несправності двигуна М2

KU – реле напруги

КТ1 – контакт реле часу з терморегулятора

Вихідні елементи.

VS1-3 – Привод двигуна М1.

VS4-6 – Привід двигуна М2 переміщення супорту вправо .

VS7-9 – Привід двигуна М2 переміщення супорту вліво.

T1 – Вмикання тену.

YA1-3 – Електромагнітні пневмоклапани.

Cхема захисту і сигналізації спрацьовує при спрацюванні одного з автоматів або реле обриву фаз і відключає всю схему управління.

Рис. 10 Циклограма вхідних та вихідних елементів .

2.5 Розробка математичної моделі схеми управління

Y=SB1KV8([(SB2+KV1)KV1VD1+(SB3+KM1)KM1SQ1+(SB4+KM2)KM2SQ2+

SPTnor(KV2+SB5)KV3KV2YA1+KV2TMYA2+KT1KV3YA3+(KV3+KV4)KM4KT2VD2)+

(QF2+KV5)KM5VD3+(QF3+KV6)KM6VD4+(KU+KV7)KM7VD7+(KV5+KV6+KV7)KV8


2.6 Розробка схеми електричної принципової

Принцип роботи схеми:

При натисканні на кнопку SB2 – вмикається рабочий режим станка і запускається двигун пневмонасосу. Робітник натискає на кнопку SB3 – якою при натисненні пересувається супорт вправо через черв’ячну передачу. Крайнє верхнє положення траверси контролюється кінцевим вимикачам SQ1. Кнопкою SB4 – переміщення супорта вліво до спрацювання кінцевого вимикача SQ2. Коли тиск в пневмосистемі має заданий рівень і заготовки вже встановлені в робочій зоні, то робітник натискає на кнопку SB5 – вмикається регулятор температури, котрий вмикає тен та спрацьовує пневмоклапан YA1- пневмозатискач заготовок. Коли нагрівник достатньо нагрітий, то автоматично здійснюється спрацювання пневмоклапана YA2, який піднімає зварювальну головку в місце стику на деякий час, який регулюється реле часу КТ1. Після спрацювання реле часу КТ1 автоматично вимикається пневмоклапан YA2 і вмикається режим стикування заготовок через пневмоклапан YA3 на час охолодження, що регулюється реле часу КТ2.

При неполадці чи перевищенні одного з параметрів вмикається сигналізація та вимикається схема управління, а елемент, котрий необхідно полагодити чи перевірити буде сигналізуватися своїм індикатором на світлодіоді.


2.7 Розрахунок та вибір елементів контролю та регулювання , силового обладнання та захисту на базі ПК з використанням електронної бази даних

2.7.1 Розрахунок пневмодвигуна:

Q – продуктивність = P*V/t

t=1000c

P=6 атм

V=1м3

ηк=0,8

ηп=0,9

kз=1.1

A=280дж/м3

Вибираємо тип двигуна 4АХД100S2 Рн = 3 кВт, n = 2880 об/хв , Ін.=5,7А.

2.7.2 Розраховуємо двигун переміщення супорту

Потужність двигуна розраховується за формулою (2.ст56);


де F – сила, яку повинен подолати двигун, Н.

V – швидкість обертання, об/хв.

η – ККД приводу

kт=1,6

F=mрух частин х 9,8 х kт =147*9,8*1,6=2320 Н

Обираємо двигун на 0,37 кВт типу 4АХД56М2 Iн=0,7А n=2850об/хв

Cos φ 0.80 ККД=83%(див додатки, табл.1.)

2.7.3 Вибір автомата двигуна пневмонасоса

Для розрахунку струму спрацювання автомата , використовується формула (2. с 87. IV.4):

Іавт=k х Iн/а, А. (2).

де а – 0,8...3.

Ін- номінальний струм двигуна

k – кратність пускового струму до номінального.

Іавт=7 х 5,7/1=40А

Струм теплового розчеплювача автомата розраховується за формулою (2. с 89. IV.7):

Ітепл= 1,1...2,5Ін (3).

Ітепл=1,5 х 5,7=9А.

Обираю автомат типу BA88 - 35 Iт=9А Iел=40А(струм спрацювання виставляється вручну)


2.7.4 Вибір автомата двигуна переміщення супорту

Для розрахунку струму спрацювання автомата , використовується формула (2. с 87. IV.4):

Іавт=k х Iн/а, А. (2).

де а – 0,8...3.

Ін- номінальний струм двигуна

k – кратність пускового струму до номінального.

Іавт=7 х 0,7/1=5А

Струм теплового розчеплювача автомата розраховується за формулою (2. с 89. IV.7):

Ітепл= 1,1...2,5Ін (3).

Ітепл=1,5 х 0,7=1А.

Обираю автомат типу BA88 - 32 Iт=1А Iел=5А(струм спрацювання виставляється вручну)

2.7.5 Вибір силових симісторів двигуна пневмонасосу

Для нормального запуску двигуна потрібно обирати симістори у яких робочий струм повинен перевищувати пусковий струм двигуна, щоб симістор в момент запуску не вийшов з ладу.

Робочий струм симістора розраховується за формулою (3. с 51).

Ісим=(k*Ін)*X, A. (8).

де k – кратність пускового струму двигуна.

Ін – номінальний струм двигуна, А.

X – коефіцієнт запасу по струму (1,1...1,5).

Ісим=(7 х 5,7) х 1,5=60 А.

Обираємо силові симістори типу ТС142-63.

2.7.6 Вибір силових симісторів двигуна супорту

Ісим=(7 х 0,7) х 1,5=7,5 А.

Обираємо силові симістори типу ТС112-10.

2.7.7 Розрахунок резисторів та конденсаторів в колі оптронів та вибір оптронів

Рспр=1Вт – потужність спрацювання симісторів

Uж=24В – напруга живлення в колі симісторів

В колі оптрона потрібно погасити напругу :

Uгас=380-Uж=380-24=356В.

Ігас=Рспр/Uгас=1/356=0,0028А – струм гасіння в колі управління симісторів.

Розраховуємо опір гасіння:

R=Uгас/Iгас=356/0,0028=127кОм.

Обираю конденсатор ємністю 0,1мкФ з робочою напругою 500В котрий має опір частоті 50Гц:

Хс=1/2πfc=1/2 х 3,14 х 50 х 0,1 х 10-6=32 кОм.

Опір резисторів рівний:

127-32=95кОм.

Найближчий номінал резистора рівний 100 кОм.

Потужність розсіювання резистора:

Рроз=І2 х R=0.00282 х 100000=0,78 Вт

Найближчий номінал потужності росіювання рівний 1 вт.

Тому виходячи з робочих струмів в колі управління симісторами обираю оптрони типу МОС3081 для всіх двигунів (див.додатки табл. 5).

2.7.8 Вибір реле обриву фаз

Для захисту обладнання необхідно контролювати зміну напруги в три-фазному колі. Для цього використовую реле контролю трифазних кіл, яке повинно мати велику швидкодію, просліджувати любі зміни напруги в колі. Згідно необхідних вимог обираю реле контролю трифазних кіл типу TRW400VN4X U=200…400B (див додатки табл. 6).

2.7.9 Вибір блоку живлення

Для схеми управління необхідне живлення 5 В та 24 В. Тому вибираю стабілізований здвоєнний блок живлення типу ABL-7RE2405 P=60Вт(див. додатки табл. 2).

2.7.10 Для схеми управління необхідно 5 кнопок

тому я обираю кнопки 21 типу U=25B Ik=0,5A .

2.7.11 Вибір світлодіодів індикації

Для індикації потрібні світлодіоди з напругою живлення 5В, червоного кольору. Світлодіоди повинні бути підключені послідовно з опором номінал якого лежить в межах 1-5 кОм.

2.8 Розрахунок надійності системи автоматики

На практиці використовють орієнтований розрахунок надійності по середньогруповій інтенсивності відказів елементів. В цьому випадку в якості вихідних данних використовуються значення інтенсивності відказів λі елементів різних груп і чисел Nі елементів які входять в систему. Сутність розрахунку зводиться до знаходження То і вірогідності безвідказної роботи Р(t).

Рекомендується слідуючий порядок розрахунку;

1 Елементи зпроектованої системи розбивають на групи приблизно з однаковими інтенсивностями відказів і підрахунку кількості елементів Nі в кожній групі.

2 По табличним інтенсивностям відказів встановлюють значення λі кожної групи елементів.

3 Розраховують добуток λіNі які характеризують долю відказів вносимих елементами кожної групи в загальну інтенсивність відказів системи.

4 Визначають загальну інтенсивність відказів системи

.

5 Розраховуємо час напрацювання на відказ То

То=1/λс.

6 Визначаємо вірогідність безвідмовної роботи системи

Розрахунок надійності схеми (див. додаток табл 12):

Мікросхем – 8шт*0,3 *10-6=2,4*10-6

Опорів постійного струму – 5шт*3*10-6=15*10-6

Опорів змінного струму –9шт*13*10-6=107*10-6

Оптронів – 9шт*1,5*10-6=13,5*10-6

Двигунів –2шт*30*10-6=60*10-6

Реле обриву фаз – 1шт*13*10-6=13*10-6

Автоматів - 3 шт*8*10-6=24*10-6

Кнопки –5шт*6*10-6=30*10-6

Світлодіодів – 5шт*0,8*10-6=4*10-6

Ел магніти –3шт*12*10-6=36*10-6

ΣλіNі=304,9*10-6

То=1/304,9*10-6=3279 год.

Будуємо номограму

Рис. 12 Номограма роботи обладнання


3. Доцільність прийнятих рішень

Використовуючи сучасні новітні технології та розробки де основною характеристикою є мінімізація схем та енергоекономія ресурсів можливо забезпечити в декілька разів більшу стійкість системи в порівнянні з релейними схемами, котрі характеризуються порівняно високою електричною споживчою потужністю та порівняно малим сроком служби , що викликане наявністю контактів та частим їх підгорянню. Тому використавши ІМС одночасно було вирішено в габаритних розмірах самої схеми управління, мінімізація елементів, мала споживча потужність схеми. Симісторні пускачі також мають ряд переваг перед магнітними пускачами, насамперед відсутність підгоряння контактів, бо симістор є безконтактним елементом, ще відкривається малою потужністю (близько 1-2Вт).