Смекни!
smekni.com

Объемные наноструктурные материалы (стр. 2 из 4)

В последние годы равноканальное угловое прессование явилось объектом многочисленных исследований в связи с возможностями практического использования объемных наноструктурных металлов и сплавов. Последние разработки направлены на увеличение геометрических размеров образцов и заготовок диаметром до 60 мм и длиной до 200 мм (рисунок 3), получение длинномерных заготовок, формирование наноструктур в труднодеформируемых и малопластичных металлах и сплавах.

Рисунок 3 – Объемные заготовки наноструктурного титана

Большое внимание уделяется также развитию других методов интенсивной пластической деформации – всесторонней ковке, специальной прокатке и др., с целью повышения эффективности процесса.

наноструктура атомный кристаллический нановолокно

2. ОСОБЕННОСТИ МОДЕЛЕЙ НАНОСТРУКТУР

Наноструктурные материалы, вследствие очень малого размера зерен, содержат в структуре большое количество границ зерен, которые играют определяющую роль в формировании их необычных физических и механических свойств. Вследствие этого в проводимых экспериментальных исследованиях и разрабатываемых структурных моделях наноматериалов границы зерен занимают центральное место.

Уже в первых работах, выполненных X. Гляйтером с сотрудниками, был установлен ряд особенностей структуры нанокристаллических материалов, полученных газовой конденсацией атомных кластеров с последующим их компактированием. Это, прежде всего, пониженная плотность полученных нанокристаллов и присутствие специфической «зернограничной фазы», обнаруженное с появлением дополнительных пиков при мессбауэровских исследованиях. На основании проведенных экспериментов, включая компьютерное моделирование, была предложена структурная модель нанокристаллического материала, состоящего из атомов одного сорта (рисунок 4).

Рисунок 4 – Атомная модель наноструктурного материала

В соответствии с этой моделью такой нанокристалл состоит из двух структурных компонент: кристаллитов зерен (атомы представлены светлыми кружками) и зернограничных областей (черные кружки). Атомная структура всех кристаллитов совершенна и определяется только их кристаллографической ориентацией. В то же время зернограничные области, где соединяются соседние кристаллиты, характеризуются пониженной атомной плотностью и измененными межатомными расстояниями.

Модель Гляйтера дала мощный толчок исследованиям структуры нанокристаллов и поиску их необычных свойств. Вместе с тем, в последующих исследованиях были выявлены и ее важные недостатки. Во-первых, в согласии с высокоразрешающей электронной микроскопией границы зерен являются значительно более узкими, чем это предсказывается моделью (см. рисунок 4) и их ширина обычно не превышает 1–2 межатомных расстояния. Во-вторых, атомно-кристаллическая решетка в нанокристаллах не является совершенной и обычно, как в случае ИПД наноматериалов, упруго искажена. Более того, в настоящее время становится очевидным, что метод получения наноструктурных материалов играет весьма важную роль в формировании их структуры и свойств. Экспериментальные исследования, проведенные с использованием различных, часто взаимно дополняющих методов, каковыми являются просвечивающая, включая высокоразрешающую, электронная микроскопия, рентгеноструктурный анализ, мессбауэровская спектроскопия, дифференциальная сканирующая калориметрия, свидетельствуют, что в наноструктурных ИПД металлах и сплавах границы зерен носят неравновесный характер, обусловленный присутствием зернограничных дефектов с высокой плотностью.

Представления о неравновесных границах были введены в научную литературу в 1980-х годах, базируясь на исследованиях взаимодействия решеточных дислокации и границ зерен.

3. НЕОБЫЧНЫЕ СВОЙСТВА НСМ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Специфические микроструктуры в объемных наноматериалах определяют их необычные свойства, многие из которых уникальны и весьма привлекательны для практического использования. Эти специфические качества связаны с изменением некоторых фундаментальных свойств материала при уменьшении размера частиц или зерна, а также с изменением соотношения некоторых объемных и поверхностных свойств.

К уникальным особенностям наноматериалов относятся отличия их температур плавления и размеров кристаллических решеток от соответствующих величин в материалах с обычной структурой. В связи с этим возникает вопрос о справедливости использования термина «постоянные решетки», применительно к размерам решетки.

С уменьшением размера частиц растет их поверхностная энергия. В результате изменяется (снижается) температура плавления частицы.

Установлено также уменьшение параметра решетки для металлов и некоторых соединений при уменьшении размера частиц. Так, при уменьшении диаметра частиц алюминия от 20 до 6 нм период решетки уменьшается примерно на 1,5%. Размер, ниже которого наблюдается уменьшение параметра решетки, различен для разных металлов и соединений.

Наноструктурные металлы и сплавы могут обладать высокой коррозионной стойкостью. В частности, эксперименты демонстрируют возможность получения обычных углеродистых сталей в наноструктурном состоянии с более высокими коррозионными свойствами, чем у специальных нержавеющих сталей. Результаты недавних исследований показывают возможность значительного повышения физических свойств исследуемых материалов; наноструктурный нитинол демонстрирует исключительную сверхупругость и эффект памяти формы; в нанокомпозите Сu – A12О3 наблюдается сочетание высокой термостабильности и электропроводимости; наноструктурные магнитотвердые сплавы (систем Fe – Nb – B, Co – Pt и др.) демонстрируют рекордные магнитные гистерезисные свойства, а магнитомягкие наноматериалы проявляют очень низкую магнитную проницаемость. Обнаружены и изучаются также аномальные оптические свойства наноструктурных металлов и полупроводников.

Однако особый интерес представляют механические свойства объемных наноструктурных материалов. Как свидетельствуют теоретические оценки, с точки зрения механического поведения формирование наноструктур в различных металлах и сплавах может привести к высокопрочному состоянию в соответствии с соотношением Холла-Петча, а также к появлению низкотемпературной или высокоскоростной сверхпластичности. Реализация этих возможностей имеет непосредственное значение для разработки новых высокопрочных и износостойких материалов, перспективных сверхпластичных сплавов, металлов с высокой усталостной прочностью. Все это вызвало большой интерес среди исследователей прочности и пластичности материалов к получению больших объемных образцов с наноструктурой, для последующих механических испытаний.

Вместе с тем, как отмечалось выше, существуют нерешенные проблемы в получении таких наноматериалов специальными методами порошковой металлургии – газовой конденсацией или шаровым размолом, в связи с сохранением в них при компактировании некоторой остаточной пористости и наличием дополнительных трудностей при приготовлении массивных образцов. Как результат, до недавнего времени были выполнены лишь единичные работы по исследованию механических свойств наноструктурных металлов и сплавов, имеющих размер зерен около 100 нм и менее. Большинство проведенных исследований связано с измерениями микротвердости, и полученные данные весьма противоречивы. Например, в некоторых исследованиях обнаружено разупрочнение при уменьшении зерен до нанометрических размеров, в то же время в ряде других работ наблюдали в этом случае упрочнение, хотя наклон кривых был меньше, по сравнению с соотношением Холла-Петча. При растяжении эти НСМ оказались очень хрупкими, несмотря на высокую твердость.

Многие из этих проблем удалось преодолеть при создании наноструктур в крупнокристаллических материалах, за счет использования методов ИПД. Полученные образцы позволили начать систематические исследования механических свойств на растяжение и сжатие во многих металлических материалах, включая промышленные сплавы. Было продемонстрировано, что в полученных наноструктурных образцах могут наблюдаться очень высокие прочностные свойства. Более того, полученные материалы часто проявляют сверхпластичность при относительно низких температурах и могут демонстрировать высокоскоростную сверхпластичность. Недавние исследования показали также новые возможности повышения механических свойств в наноструктурных сплавах с метастабильной структурой и фазовым составом. Формирование метастабильных состояний позволяет получить особо прочные материалы после последующих отжигов, что связано не только с наличием очень мелкого зерна, но также со специфической дефектной структурой границ зерен, морфологией вторых фаз, повышенным уровнем внутренних напряжений, кристаллографической текстурой и т. д.. В связи с этим становится актуальной задача комплексного исследования влияния структурных особенностей наноматериалов на их механическое поведение.