Смекни!
smekni.com

Расчет структурной схемы системы автоматического управления (стр. 2 из 2)

0.018 0.612 2.71
0.1314 2 0
C13=0.3384 C23=2.71 C33=0 τ 3 =0.137
C14=0.948 C24=0 C34=0 τ 4=0.388
C15=2.71 C25=0 C35=0 τ 5=0.357
C16=0 C26=0 C36=0 τ 6=0.34

Все элементы первого столбца таблицы имеют один и тот же знак, следовательно, характеристический полином замкнутой системы имеет корни только в левой половине комплексной плоскости. Замкнутая САУ устойчива.

Определение устойчивости замкнутой системы методом Гурвица.

Построим определители Гурвица

Все определители Гурвица положительны, следовательно, характеристический полином замкнутой системы имеет корни только в левой половине комплексной плоскости. Замкнутая САУ устойчива.

8. Определение устойчивости замкнутой системы с помощью частотного критерия Михайлова

Характеристический полином системы

s→jω

Вещественная функция Михайлова:

.

Мнимая функция Михайлова:


Решим уравнения

;
.

,

Учитываем корни ω > 0

;
;

;
.

;
;
.

Построим таблицу

ω 0 2.88 3.9 5.36
Re(ω) 2.71 0 -2.44 0
Im(ω) 0 3 0 -9.57

Годограф Михайлова (в схематичном виде) представлен на рисунке 5.

Рисунок 5.


Критерий Михайлова: Замкнутая САУ будет устойчивой тогда и только тогда, когда годограф Михайлова, при изменении частоты ω от 0 до +∞ начинаясь на положительной действительной полуоси последовательно и нигде не обращаясь в 0 пересекает n квадрантов комплексной плоскости (где n – порядок характеристического полинома САУ).

В данном случае годограф соответствует критерию Михайлова, значит замкнутая САУ устойчива.

9. Коэффициенты ошибок системы

Передаточная функция ошибки будет иметь вид


10. Переходная функция САУ

Найдем корни N(s):

Получим следующее:

Построим график с помощью ЭВМ.

График переходной функции.

Из графика видно, что время регулирования tp≈3.29с, а перерегулирование

.