Жаростойкие и жаропрочные материалы
1. Жаропрочность
Жаропрочные стали и сплавы предназначены для изготовления деталей котлов, газовых турбин, реактивных двигателей, ракет, атомных устройств и др., работающих при высоких температурах.
Повышение температуры сильно понижает механические свойства. При этом следует иметь в виду, что если при высокой температуре нагрузить металл постоянно действующим напряжением, даже ниже предела текучести при этой температуре, и оставить его под нагрузкой длительное время, то металл в течение всего времени действия температуры и нагрузки будет формироваться с определенной скоростью. Это явление получило название ползучести или крипа. Развитие ползучести может привести к разрушению металла.
Сопротивление металла ползучести и разрушению в области высоких температур при длительном действии нагрузки называют жаропрочностью. Жаропрочность характеризуется условным приделом ползучести и пределом длительной прочности.
Явление ползучести наблюдается тогда, когда рабочая температура выше температура рекристаллизации, действующее напряжение выше предела упругости.
Жаропрочность в первую очередь зависит от температуры плавления металла. Чем выше температура плавления металла, тем выше его температура рекристаллизации. Между названными температурами существует следующая зависимость:
Тр = αТпл К,
где α = 0,3…0,4 для технически чистых металлов, α = 0,6 …0,8 для сплавов.
Под условным приделом ползучести понимают напряжение, которое за установленное время испытания при данной температуре вызывает заданное удлинение образца или заданную скорость деформации (ползучести).
Ползучесть представляет собой медленное нарастание пластической деформации под действием напряжений, меньших предела текучести. Типичная зависимость деформации от времени нагружения представлена на рис. 1.
Рис. 1. Кривая ползучести: I – неустановившаяся стадия; II – установившаяся стадия; III – стадия разрушения
Кривая ползучести состоит из трех участков. Стадия I так называемой неустановившейся ползучести отличается постепенным затуханием скорости деформации до определенного постоянного значения. Стадия II – установившейся ползучести – характеризуются постоянной скоростью деформации. На стадии III– стадии разрушения – скорость деформации нарастает до момента разрушения. Как правило, она непродолжительна и для деталей недопустима.
Предел ползучести обозначают через σ и числовыми индексами. Так, σ7000,2/100 означает предел ползучести при допуске на деформацию 0,2% за 100 ч. испытания при 700ОС. В случае определения предела ползучести его обозначают буквой σ с двумя числовыми индексами. Нижний индекс означает заданную скорость ползучести (%/ч), верхний индекс – температуру испытания, ОС; так, σ60010-5 – предел ползучести при скорости ползучести 1* 10-5%/ч при 600 ОС.
Предел длительной прочности, т.е. наибольшее напряжение, вызывающее разрушение металла за определенное время при постоянной температуре, обозначают σ с двумя числовыми индексами. Так σ7001000 означает придел длительной прочности за 1000 ч. при 700ОС.
Повышения жаропрочности достигают легированием твердого раствора, приводящим к увеличению энергии связи между атомами, в результате чего процессы диффузии и самодиффузии задерживаются, а температура рекристаллизации возрастает, созданием у сплава специальной структуры, состоящей из вкрапленных в основной твердый раствор и по границам зерен дисперсных карбидных и особенно интерметаллидных фаз. Такая структура получается в результате закалки с высоких температур и последующего старения. Наличие равномерно распределенных дисперсных избыточных фаз затрудняет пластическую деформацию при высоких температурах. Чем крупнее зерно, тем выше жаропрочность.
Жаропрочные сплавы для работы при высоких температурах (до 700 – 950 ОС) создаются на основе железа, никеля и кобальта, а для работы при еще более высоких температурах (до 1200–1500ОС) – на основе хрома, молибдена и других тугоплавких металлов.
Рабочие температуры жаропрочных сталей составляют 500 – 750ОС. При температурах до 600 ОС чаще используют стали на основе α-твердого раствора, а при более высоких температурах – на основе γ-твердого раствора с гранецентрированной кубической решеткой.
2. Стали перлитного класса (ГОСТ 20072–79)
Для изготовления малонагруженных деталей и узлов энергетических установок, работающих при температурах не выше 500 – 580 ОС, используют низкоуглеродистые стали перлитного класса, содержащие не менее 1% хрома, молибдена и ванадия. Эти элементы, повышая температуру рекристаллизации феррита и затрудняя диффузионные процесс, повышают жаропрочность стали.
Для изготовления деталей котельных установок, работающих при 510 ОС и давлении 1000–1100 МПа, применяют сталь 15ХМ или более жаропрочную 12Х1МФ. Сталь 12Х1МФ удовлетворительно обрабатывается давлением и сваривается. После нормализации 960 – 980 ОС и отпуска при 740 ОС предел ползучести этой стали σ56010-4 = 85 МПа; предел длительной прочности σ560104 = 140 МПа.
3. Стали мартенситно-ферритного класса
Детали и узлы газовых турбин и паросиловых установок изготавливают из мартенситных сложнолегированных сталей 18Х12ВМБФР и 15Х12ВНМФ, в состав которых входят Mo, W, V, Nb, B. Эти элементы повышают температуру рекристаллизации. Они образуют карбиды типа М23С6, М7С3, М2С, МС и соединение Fe2Mo, в результате повышается жаропрочность стали.
Рабочие температуры этих сталей могут достигать 600 – 620 ОС.
Для получения оптимальной жаропрочности высокохромистые стали закаливают на мартенсит. Структура сталей после отпуска – сорбит и троостит. Для стали 18Х12ВМБФР при 550 ОС σ105 = 250÷300, а для стали 15Х12ВНМФ – 200 МПа.
4. Стали аустенитного класса (ГОСТ 5632–72)
Для получения структуры аустенита эти стали должны содержать большое количества хрома, никеля и марганца. Для достижения высокой жаропрочности их дополнительно легируют Mo, W, V, Nb и B. Эти стали идут для изготовления деталей, работающих при 500–750ОС. Жаропрочность аустенитных сталей выше, чем перлитных и мартенситно-ферритных. Сталей.
Аустенитные стали пластичны и хорошо свариваются, однако обработка их резанием затруднена.
Аустенитные стали по способу упрочнения делят на три группы:
1. твердые растворы, содержащие сравнительно мало легирующих элементов;
2. твердые растворы с карбидным упрочнением. В этом случае упрочняющими фазами могут быть как первичные (TiC, VC, ZrC, NbC и др.), так и вторичные карбиды (М23С6, М7С3, М6С), выделяющиеся из твердого раствора;
3. твердые растворы с интерметаллидным упрочнением. Упрочняющей фазой в этих сталях является γ-фаза типа Ni3Ti, Ni3Al, Ni3Nb и др.
Стали с интеметаллидным упрочнением более жаропрочны, чем стали с карбидным упрочнением.
Аустенитные жаропрочные стали со структурой твердых растворов (например, 09Х14Н16Б и 09Х14Н18В2БР) предназначены для работы при 600–700ОС, их применяют после закалки с 1100–1160ОС в воде или на воздухе.
Для достижения высокой жаропрочности аустенитные стали с карбидным и интерметаллидным упрочнением подвергают закалке с 1050–1200ОС в воде, масле или на воздухе для растворения карбидных и интерметаллидных фаз в твердом растворе – аустените – и получения после охлаждения однородного высоколегированного твердого раствора и старению при 600–850ОС для выделения дисперсных фаз из твердого раствора, упрочняющих сталь.
Высокая жаропрочность сталей с карбидным упрочнением достигается введением в хромоникелевый или хромоникельмарганцовистый аустенит 0,3 – 0,5% С и карбидообразующих элементов Mo, W, V, Nb и др. К этим сталям относятся, например, стали 45Х14Н14В2М и 40Х12Н8Г8МФБ, а также сталь 40Х15Н7Г7Ф2МС, в которой никель частично заменен марганцем. Длительная прочность σ600100 этой стали составляет 400 МПа.
К сталям с интерметаллидным упрочнением относится большая группа сложнолегированных сталей, содержащих, кроме хрома и никеля, титан, алюминий, вольфрам, молибден и бром. Содержание углерода в этих сталях должно быть небольшое, так как он связывает молибден и вольфрам в карбиды, что понижает жаропрочность аустенита. Бор упрочняет границы зерен аустенита в результате образования боридов.
К этой группе относится сталь 10Х11Н2Т3Р, применяемая в виде листов для изготовления сварных деталей, работающих при температурах 550 – 750 ОС, а также сталь 10Х11Н23Т3МР. Длительная прочность σ600100 и σ700100 этих сталей составляет 550 – 600 и 300 – 400 МПа соответственно.
сталь сплав жаропрочный деталь
5. Жаропрочные стали на никелевой основе (ГОСТ 56321–32)
Жаропрочные сплавы на основе никеля называют нимониками. Эти сплавы предназначены для изготовления деталей с длительным сроком службы при 650–850ОС.
Для получения высокой окалиностойкости никель легируют хромом (20%), а для повышения жаропрочности – титаном (1,0–2,8%) и алюминием (0,55–5,5%). В этом случае при старении закаленного сплава в основном γ-твердом растворе образуется интерметаллидная γ-фаза [типа Ni3 (Ti, Al)], а также карбиды TiC и нитриды TiN, увеличивающие прочность при высоких температурах. Дальнейший рост жаропрочности достигается легированием сплавов 2,0–11% Мо и 2,0–11% W, повышающими температуру рекристаллизации и затрудняющими процесс диффузии в твердом растворе, определяющий коагуляцию избыточных фаз и рекристаллизацию. Добавление к сложнолегированным сплавам 4–16% Со еще больше увеличивает жаропрочность и технологическую пластичность сплавов. Для упрочнения границ зерен γ-твердого раствора сплав легируют бором и цирконием. Они устраняют вредное влияние примесей, связывая их в тугоплавкие соединения. Примеси серы, сурьмы, свинца и олова понижают жаропрочность сплавов и затрудняют их обработку давлением.