Смекни!
smekni.com

Система управления электроприводом БТУ 3601 (стр. 2 из 4)

где

– для машин без компенсационной обмотки;
– номинальный ток двигателя.

Индуктивность сглаживающего ректора:


где

– индуктивность анодного реактора,

Так, как по расчету получилась отрицательная величина

, то это свидетельствует о том, что при принятом уровне пульсации тока катодный дроссель не нужен. Тогда действительный уровень пульсации тока первой гармоники с учетом приведенной индуктивности трансформатора или анодного реактора можно определить по формуле:

Значение гранично-непрерывного тока якоря двигателя в этом случае можно найти, используя соотношение:

где

– граничное значение коэффициента:

Рассчитаем максимальный угол регулирования

:

где

– конструктивная постоянная на номинальный поток:

Рассчитаем скорость двигателя при максимальном угле управления:

При угле регулирования

значение гранично-непрерывного тока
больше, чем
, значит влиянием прерывистого режима тока электроприводе нельзя пренебречь.

3. Расчет параметров силовой цепи электропривода

Эквивалентное сопротивление якорной цепи двигатель – преобразователь:

Эквивалентная индуктивность якорной цепи двигатель – преобразователь:

d – Коэффициент из табл. 1 [2].

Напряжение преобразователя при работе электропривода в номинальном режиме

Угол регулирования, соответствующий номинальному режиму работы:

Минимальный угол регулирования должен превышать

для надежного включения вентиля, значит запас напряжения доступный преобразователю равен отношению:

Электромагнитная постоянная времени якорной цепи двигатель – преобразователь:


Электромеханическая постоянная времени электропривода:

где:

–приведенное значение момента инерция привода;

4. Построение статических характеристик разомкнутого электропривода

4.1 Естественные характеристики двигателя

Найдем номинальное значение момента двигателя:

Естественная механическая характеристика двигателя постоянного тока описывается выражением [3]:

Естественную характеристику построим по двум точкам:

1. Точка идеального холостого хода

при
:

2. Точка работы при номинальной частоте вращения

.

4.2 Основные характеристики электропривода

Основная механическая характеристика электропривода описывается уравнением:


Основную характеристику построим по двум точкам:

1. Точка идеального холостого хода

при
:

2. Точка работы при номинальной частоте вращения

.

4.3 Характеристики, обеспечивающие минимальную скорость работы электропривода

Минимальную скорость работы электропривода будет обеспечивать

напряжение преобразователя равное:

1. Точка идеального холостого хода

при
:

2. Точка работы при минимальной частоте вращения

.

4.4 Характеристики аварийного динамического торможения

Механическая характеристика динамического торможения описывается выражением:

где

– добавочное сопротивление якоря двигателя при динамическом торможении.

Все полученные характеристики построены на рис. 2 и рис. 3.

Рис. 2

Рис. 3

5. Синтез и расчет параметров регуляторов в линеализованных системах управления частотой вращения электропривода

5.1 Структурная схема автоматизированного электропривода

При проектировании электропривода двухконтурной схемой с контурами регулирования скорости и тока, линеаризованная структурная схема двухконтурного автоматизированного электропривода регулирования частоты вращения представлена на рис. 4.

Рис. 4

Где передаточные функции звеньев двигателя: W1(р), W2(р), W3(р); преобразователя WП(p) и передаточные функции фильтров WОС(p), WОТ(p), положительная обратная связь с передаточной функцией W4(р) служит для компенсация внутренней обратной связи по ЭДС двигателя, передаточные функции регуляторов WРС(p), WРТ(p) и их параметры будут определен в процессе синтеза методом подчиненного регулирования.

Тиристорный преобразователь является звеном, передаточная функция которого:


где –

коэффициент усиления управляемого вентильного преобразователя, который определяется выбранной точкой линеаризации; Тn = 0,009 с – постоянная времени системы управления преобразователем.

Коэффициент обратной связи по току: