Спецификации оформляются в соответствии с ГОСТ 2.108–95 [8] на листах формата А4 (210 х 297). Спецификации и другие конструкторские и технологические документы оформлять в виде приложений не допускается. Эти документы допускается подшивать в одной папке с пояснительной запиской после ее последней страницы. Они не вносятся в содержание.
Наличие ошибок, несоблюдение требований нормативной документации и небрежность в оформлении пояснительной записки, чертежей и другого графического материала могут существенно повлиять на оценку по курсовой работе.
Пояснительная записка и графический материал подписываются автором работы и руководителем.
3. Порядок выполнения работы
Рассмотрим порядок выполнения работы на примере конструктивного анализа одностороннего рейсмусового станка СР4–1.
3.1 Общая часть
3.1.1 Назначение и техническая характеристика станка
Деревообрабатывающий рейсмусовый станок модели СР4–1 относится к группе односторонних рейсмусовых станков. Станок предназначен для продольного фрезерования заготовок в заданный размер по толщине путем удаления материала со стороны заготовки, противоположной базовой. Станок относится к универсальному оборудованию с широкой областью применения в деревообработке – мебельные, столярно-строительные производства, судостроение, вагоностроение и др.
Станок изготовлен заводом «Красный Металлист», г. Ставрополь, Россия.
Далее следует представить в табличном виде техническую характеристику станка, как это выполнялось в лабораторных работах по курсу дисциплины.
3.1.2 Описание конструкции станка
По альбому чертежей конструкций деревообрабатывающих станков, полученному на кафедре (или другим литературным или конструктивным источникам), студент знакомится с общим видом станка, конструкцией его основных узлов, функциональной, кинематической и пневматической схемами. В соответствии с рис. 1 дается спецификация указанных узлов и механизмов станка, последовательно описывается их техническое назначение.
3.1.3 Анализ схематики станка
Функциональная (технологическая) схема (рисунок 2) показывает взаимодействие обрабатываемой заготовки с режущим (или иным) инструментом, базирующими, подающими, направляющими и другими элементами машин, в том числе и элементами безопасности – противовыбрасывателями, стружкоприемниками и т.д. Схема вскрывает технологическую сущность рабочих процессов, но не содержит данных, каким образом достигаются необходимые движения элементов машины.
Кинематической называют схему, изображающую способ передачи движений от двигательного механизма к исполнительному. По ней прослеживаются все кинематические связи и рассчитываются скорости перемещения, частоты вращения и т.д.
Пневматическая (гидравлическая) схема показывает состав и соединения элементов, входящих соответственно в пневматические (гидравлические) системы машины.
Эти схемы используются для описания конструкции станка и принципа его работы. Поскольку данный станок не оснащен пневмо- или гидрооборудованием, то и соответствующие схемы у него отсутствуют, и естественно в данном анализе рассматриваться не будут.
Как видно из функциональной схемы, данной рисунке 2, процесс продольного фрезерования заготовки 1 выполняется ножевым валом 4 при движении подачи заготовки по столу 2 (подвижное базирование). Расстояние от рабочей поверхности стола 2 до окружности резания ножевого вала 4 определяет размер получаемой детали по толщине. Толщина срезаемого слоя равна t.
Подача заготовки выполняется верхними рифленым 8 и гладким 6 приводными вальцами. Нижние вальцы 3 устанавливаются в столе 2 станка так, что их цилиндрическая поверхность возвышается над столом на 0,1 … 0,25 мм (в зависимости от материала, шероховатости поверхности, влажности материала заготовки).
Рисунок 2. Функциональная схема станка рейсмусового одностороннего модели СР 4–1
Применение вальцов 3 позволяет уменьшить коэффициент трения заготовки по столу и как следствие необходимую силу прижима вальцов 8 и 6, а также силы сопротивления подаче и мощность привода подачи. Расположение верхних и нижних вальцов «по трапеции» позволяет исключить «подрыв» заготовки при ее входе в контакт с ножевым валом и выходе из контакта.
Передний секционный и задний прижимы скольжения 7 должны обеспечивать устойчивый прижим заготовки к столу 2 станка. Одновременно они локализуют зону обработки, что улучшает процесс удаления отходов резания системой аспирации. Передний прижим предотвращает процесс образования опережающей трещины в процессе обработки.
Стол 2 имеет возможность настроечного перемещения по высоте на заданный размер обработки по толщине детали с помощью винтов 5.
Секционная «когтевая» завеса 9 предотвращает выброс заготовки 1 из зоны резания станка.
На кинематической схеме, представленной на рисунке 3, показаны механизмы резания, подачи и размерной настройки стола станка.
В качестве режущего инструмента на одностороннем рейсмусовом станке используется ножевой (рабочий) вал. Необходимость установки инструмента между опор определяется использованием инструмента значительной длины со сменными ножами, а также большими массой инструмента и силами резания.
Ножевой вал 16 станка приводится во вращение от асинхронного электродвигателя 23 (n =2900 мин-1) через шкивы 22 и 21 клиноременной передачи. Шкив 13 колодочного тормоза с электромагнитным приводом обеспечивает останов ножевого вала после выключения механизма резания.
Механизм подачи станка состоит из электродвигателя, передаточного механизма и приводных вальцов. Передний рифленый 17, а также задний гладкий 18 вальцы приводятся во вращение от двухскоростного (n/n = 700/1430 мин-1) асинхронного электродвигателя М2 (1) через коробку перемены передач с зубчатыми шестернями, и звездочки 28, 24, 20, 19 цепной передачи. При включении электромагнитной муфты 34, крутящий момент передается через шестерни 36, 35, 2, 4, 30, 25, 26, 3, 29, 27 на звездочку 28 и звездочки 19 и 20 привода подающих вальцов. При включении электромагнитной муфты 33, крутящий момент передается через шестерни 32, 31, 2, 4, 30, 25, 26, 3, 29, 27 на звездочку 28 и звездочки 19 и 20 привода подающих вальцов. Звездочка 24 является натяжной.
Размерная настройка стола станка по высоте выполняется маховиком 8. Вращение от маховика 6 передается через цепную передачу со звездочками 9 и 7 на червячный редуктор 10 и далее через конические шестерни 6 и 23, 5 и 26 на винты 11, 12. Вращение винтов преобразуется винтовой передачей в поступательное движение гаек, смонтированных в основании стола. В результате чего стол перемещается по высоте.
3.1.4 Кинематические расчеты станка
Кинематические расчеты частоты вращения ножевого вала, скорости резания, скоростей вальцовой подачи и механизма размерной настройки стола по высоте выполняются по кинематической схеме (рис. 3).
Частота вращения ножевого вала, n
(мин-1)Во всех механизмах резания с вращательным движением режущего инструмента скорость VГ (м/с) главного движения зависит от частоты вращения n16 (мин-1) инструмента и его диаметра D16 (мм)
(3.2)Использование двухскоростного электродвигателя и двухскоростной коробки перемены передач обеспечивает получение четырех частот вращения nв1, nв2, nв3, nв4 подающих вальцов, мин-1:
; ; ; ; ; .Перемещение стола по высоте при повороте маховика на один оборот может быть рассчитано по формуле
.Рассчитанные параметры кинематической схемы заносятся в сводную таблицу (пример оформления расчета для абстрактного станка с кинематической схемой по рисунку 4, а, дан в таблице 1).
Таблица 1 – Результаты кинематического расчета
Наименование элементов | Характеристика элемента схемы | Передаточное число, U′ | Частота вращения вала n, 1/мин | Скорость подачи Vs, м/мин | Скорость резания Vг, м/с | |
D, мм | Z | |||||
Вал І эл/двигат. | 1500 | |||||
Шкив D1 | 181 | 1,56 | ||||
Шкив D2 | 116 | 1,56 | ||||
Вал ІІ | 2340 | |||||
Шестерня Z1 | 22 | 0,286 | ||||
Зубч. колесо Z2 | 77 | 0,286 | ||||
Вал ІІІ | 668 | |||||
Звездочка Z3 | 26 | 0,351 | ||||
Звездочка Z4 | 74 | 0,351 | ||||
… | … | … | … | |||
Вал Х (подающ) | 120 | 32 | 12 | |||
ВалХІ (эл/двигат.) | 3000 | |||||
Шкив D3 | 176 | 1,76 | ||||
Шкив D4 | 100 | 1,76 | ||||
ВалХІІ (ножевой) | 128 | 5280 | 35,4 |
В процессе работы станка часть мощности двигателя теряется на элементах кинематики при движении энергетического потока от двигательного механизма к исполнительному. Наглядную картину потерь мощности на различных элементах кинематической схемы дает ручьевая диаграмма потерь. Для построения диаграммы последовательно проводятся расчеты мощности, отводимые после каждого элемента кинематической схемы с учетом его КПД (зi). Затем определяются потери в каждом из них. Расчет производится в табличной форме (таблица 2). Значения КПД отдельных звеньев и передач приведены в таблице приложения Г.