Смекни!
smekni.com

Пластикация каучука (стр. 2 из 3)

Пластицированный каучук выходит из кольцевого зазора между наконечником и мундштуком в виде трубы диаметром 150— 200 мм с толщиной стенки 15—20 мм. На выходе трубки каучука из мундштука установлен нож, разрезающий ее в продольном направлении. Благодаря такой конструкции подшипник 17 и стойка 16 не препятствуют выходу каучука. Полученную ленту подают на охлаждающий транспортер и режут на куски. Толщину стенок трубы пластицированного каучука можно регулировать изменением кольцевого зазора между головкой и наконечником.

Постоянство заданного температурного режима в различных участках пластикатора обеспечивается автоматическими регуляторами температуры за счет регулирования подачи охлаждающей воды и греющего пара.

Пластикация каучука в червячных пластикаторах обусловлена сдвиговыми деформациями, возникающими в каучуке в осевом направлении при вращении червяка, и силами трения между каучуком и стенками цилиндра, каучуком и поверхностью червяка. Напряжение сдвига зависит от вязкости каучука, температуры, скорости сдвига, геометрии червяка, зазора между червяком и стенками цилиндра и других факторов. Скорость сдвига зависит от диаметра червяка и частоты его вращения. Вследствие трения каучука о стенки камеры и о поверхность червяка, а также в результате внутреннего трения происходит интенсивное нагревание каучука при пластикации. Практически вся потребляемая пластикатором энергия превращается в тепло, которое частично рассеивается в окружающую среду, а в основном уносится охлаждающей водой и нагретым пластицированным каучуком.

За один пропуск в присутствии ускорителя пластикации получают пластикат П-1 с пластичностью 0,21—0,30. Для повышения пластичности пластикат П-1 необходимо пропустить вторично через пластикатор после его полного охлаждения. Полученный пластикат П-2 будет иметь пластичность 0,31—0,40.

Пластикация каучуков в закрытых резиносмесителях.

По сравнению с червячным пластикатором резиносмеситель имеет меньшую поверхность охлаждения, а теплообразование в нем более значительное. Процесс пластикации в резиносмесителях происходит в условиях термоокислительной деструкции, активированной механическим напряжением в камере 250л и частотой заднего ротора 40об/мин, при выгрузке температура пластиката достигает 140 – 1800С. Иногда пластикацию каучуков в скоростных смесителях совмещают с приготовлением резиновых смесей.

Пластикация каучука на вальцах

При небольшом расходе каучуков их пластицируют на вальцах, схема которых представлена на схеме 3. Пластикацию на вальцах рационально проводить при малых масштабах производства. В начале процесса холодные каучуки обладают высокой эластичностью, и втягивание их в зазор между валками затруднительно, поэтому загрузку надо проводить малыми порциями и при малом зазоре между валками. Чем жестче каучук и чем ниже его температура, тем больше затрачивается механической энергии на его деформацию, и тем больше нагревается каучук и валки. Чтобы получить пластикат однородного качества применяют следующие приемы:

1) Непрерывная обработка каучука сначала при небольшом зазоре (1-3мм) в течение 10-15мин, а затем при зазоре 5-10мм в течение 10-15мин.

2) Дву- или трехкратная пластикация с охлаждением пластицируемой массы между последовательными операциями.

3) «Размалывающая» пластикация – последовательные пропуски через тонкий зазор (1-3мм) с последующим охлаждением пластицируемой массы до 30 – 400С.

Наибольшее увеличение пластичности отмечается в первые 10мин, потом она изменяется крайне медленно, что видно из графика. Расход энергии, затрачиваемой на преодоление упругих деформаций и на механическую деструкцию макромолекул каучука, зависит от объема массы в рабочей зоне и давления в зазоре. Во время обработки каучука повышается его температура, уменьшается вязкость и коэффициент трения, что приводит к снижению расходуемой энергии. Для получения более однородного пластиката надо производить его подрезку. При загрузке каучука на вальцы каучук не должен быть замороженным (это может вызвать поломку вальцев) и не влажным (ухудшается захват каучука валками). Для получения смесей с высокой пластичностью каучук подвергают трехкратной пластикации. На вальцах производят пластикацию бутадиен-нитрильных каучуков, которые не удается пластицировать другими методами.

Схема 3. Схема устройства вальцов

1— трансмиссионные роликовые подшипники; 2, 14 — правая и левая станины; 3 — коммуникации охлаждения; 4 — кожух передаточных шестерен; 5 — передаточные шестерни;. 6— электродвигатель механизма регулирования зазора; 7, 9 — правая и левая траверсы; 8 — трос механизма аварийного останова; 10 — приводные шестерни (большая и малая); 11 — кожух предохранительный; 12 — циферблат указателя зазора; 13 — валковые подшипники; 15 — фундаментная плита; 16 — трансмиссионный приводной вал; 17, 18 — передний к задний валки; 19 — поддон.

Вальцы состоят из двух литых станин, установленных на фундаментной плите. В станины вмонтированы на роликовых подшипниках два полых валка из кокильного чугуна, вращающиеся с разной частотой. Рабочая поверхность валков отбелена на глубину 8—15 мм. Подшипники переднего валка могут перемещаться в направляющих станинах при помощи механизма для регулирования зазора, приводимого в движение от индивидуальных электродвигателей через двухступенчатые редукторы или вручную маховичком. Подшипники заднего валка закреплены неподвижно. Под регулирующими зазор нажимными винтами установлены предохранительные шайбы, которые при перегрузке вальцов срезаются, чем предотвращается поломка валков и других деталей. При срезании предохранительной шайбы зазор значительно увеличивается. Для контроля за зазором со стороны работающего имеются специальные указатели, а для ограничения раздвижения валков на расстояние, превышающее максимально допустимое, — концевые выключатели приводного электродвигателя. На концах рабочих поверхностей валков установлены ограничительные раздвижные стрелки препятствующие сползанию обрабатываемого материала за пределы рабочей поверхности. Зазоры между валками и стрелками должны быть минимальными. Стрелки изготовляют из мягкого материала, чтобы не поцарапать рабочую поверхность валка. Под валками помещают выдвижной противень для сбора просыпающихся материалов с рабочей поверхности. Температурный режим на валках поддерживают с помощью системы водяного охлаждения (температура воды 4—25 °С) путем орошения внутренних поверхностей валков. Для поддержания необходимой эффективности охлаждения внутренние поверхности валков должны содержаться в чистоте.

Смазку валковых подшипников производят централизованно под давлением. Нижние части приводных и фрикционных шестерен, а также червячных пар погружены в масляные ванны.

Безопасность работы вальцов обеспечивается автоматическим аварийным устройством, выключающим электродвигатель и включающим торможение, причем пробег валков с момента выключения не превышает оборота переднего валка. Дистанционное и автоматическое управление приводным электродвигателем и механизмом регулирования зазора производится с помощью магнитных станций и панелей управления.

Современные установки вальцов оснащают различными приборами контроля технологического процесса: регистрирующими и указывающими приборами для замера температур входящей и отработанной охлаждающей воды, рабочих поверхностей валков и резиновой смеси, валковых подшипников и др.; приборами для контроля давления воды; приборами централизованной смазки; расходомерами для воды, электроэнергии; приборами, контролирующими зазор между валками.

В зазоре между валками и перед ними (в крутящемся запасе) вследствие деформации слоев каучука с разной скоростью возникают большие напряжения сдвига, приводящие к деструкции макромолекул. Благодаря тому что область, в которой происходят сдвиговые деформации, невелика, а поверхность охлаждения валков большая, процесс можно проводить при невысокой температуре, в условиях, когда происходит механическая пластикация. При этом виде пластикации обычно не применяют химических пластификаторов.

пластикация каучук декристаллизация червячный

Гранулирование каучуков и резиновых смесей

Для облегчения дозирования натурального и синтетических каучуков их гранулируют с помощью специальных машин (грануляторов). Наиболее широко применяют грануляторы червячного типа (схема 4).


Схема 4. Гранулятор червячного типа

1 — станина; 2 — упорный подшипник; 3 — большая приводная шестерня; 4 — хвостовая часть червяка; 5 — сальниковое уплотнение; 6 — роликовый подшипник; 7 —труба; 8 — загрузочная воронка; 9 — рабочий цилиндр; 10 — пневматический цилиндр; 11— резательные ножи; 12 — кожух для приема гранул; 13 — редуктор; 14 — ременная передача; 15 — электродвигатель; 16 — приводное устройство; 17 —головка; 18 — полый вращающийся вал; 19 — неподвижный вал; 20 — перфорированная шайба; 21 — сменная насадка; 22 — сменная гильза; 23 — червяк.

На станине 1 установлен рабочий цилиндр 9, внутри которого запрессована гильза 22 из износостойкой стали. В цилиндре есть загрузочное отверстие и рубашка для подачи холодной или горячей воды. В рабочей зоне червяк 23 имеет однозаходную нарезку с переменным шагом (при такой нарезке червяка обеспечиваются хороший захват материала в загрузочной зоне и меньшее тепловыделение в рабочей зоне).

Отношение длины рабочей части червяка к диаметру равно 3,5, его витки имеют закаленную поверхность гребней или специальную наплавку из твердых сплавов. На конце червяка установлена сменная насадка 21, обеспечивающая равномерную подачу каучука (или резиновой смеси) под давлением на перфорированную пластину. Насадка имеет двухзаходную нарезку с большим углом подъема винтовой линии. Зазор между насадкой червяка и перфорированной пластиной составляет 1,5—2 мм.