Смекни!
smekni.com

Пластикация каучука (стр. 1 из 3)

Каучук


Пластикация – технологический процесс и само явление, в результате которого повышается пластичность каучука (легкость деформирования и способность сохранять форму после снятия деформирующей нагрузки), снижается его вязкость и эластическое восстановление, а также влияет на физические свойства резиновых смесей и вулканизатов. С повышением пластичности, облегчается формование, снижается вязкость раствора каучука (можно получить более концентрированные клеи при меньшем расходе растворителя), но в то же время ухудшаются механические свойства, сопротивление истиранию, увеличивается остаточная деформация. При изготовлении резиновых смесей надо использовать каучук с определенными пластическими свойствами, с учетом назначения резинового изделия. Первоначальное повышение пластичности каучука происходит из-за разрушения глобулярной структуры в процессе механической обработки, но если структура не является глобулярной, пластикация объясняется деструкцией макромолекул каучука и снижением его молекулярной массы под действием механических напряжений и окислительных процессов. Разрыв макромолекул под действием механических напряжений возможен, если размер этих макромолекул превышает некоторое минимальное значение, определяемое природой и структурой полимера и скоростью деформации. Разрыв макромолекул каучука под действием механических напряжений возможен, если размер этих макромолекул превышает некоторое минимальное значение, определяемое природой и структурой полимера и скоростью деформации. Разрыву молекулярных цепей каучука при механической обработке способствует образование физических «зацеплений» и захлестов (переплетений) макромолекул, число которых повышается с увеличением молекулярной массы полимера и его разветвленности. При использовании химических пластификаторов увеличивается эффект пластикации, так как предотвращаются рекомбинация радикалов и их взаимодействие с молекулами полимера. В качестве ускорителей пластикации широкое применение находят некоторые ароматические меркаптаны и дисульфиды. Эффективным ускорителем пластикации является меркаптобензтиазол. При использовании ускорителей пластикации увеличивается скорость деструкции натурального каучука как при низких, так и при высоких температурах; наибольшую активность они проявляют при температуре выше 80 °С. На 100 масс.ч. каучука приходится 0,1—0,3 масс. ч. ускорителей пластикации.

Подготовка каучуков

Для механизации и автоматизации дозировки каучуков, поступающих в виде кип, брикетов или рулонов, их гранулируют или режут на куски определенной формы и массы. Кипы или брикеты закристаллизовавшихся каучуков (натуральные, хлоропреновые каучуки (с регулярной структурой) при хранении кристаллизуются, что приводит к повышению жесткости и, как следствие, затрудняет резку и дальнейшую переработку) разогревают до температуры 40-500С, иногда разрезая на куски, чтобы сократить время прогрева до 10 – 24ч. Если количество потребляемого каучука небольшое декристаллизацию проводят в распарочных камерах 5*6*5м, камеры которых обогреваются горячим воздухом. Кипы натурального каучука прогревают либо при Т=700С в течение 35 – 50ч, либо при Т=500С летом 50ч, а зимой 72ч. Минусы такого способа заключаются в неравномерном прогреве каучука по массе, окислении поверхности каучука, а плюсы – в простоте конструкции и обслуживания.

При большом потреблении каучука, его декристаллизуют на специальных установках в поле токов высокой частоты (высокочастотное электрическое поле с переменной частотой 20 – 75МГц). Эти установки бывают двух видов: непрерывного (состоят из нескольких последовательно расположенных камер, через которые по транспортеру движутся кипы каучука) и периодического действия (состоят из одной камеры). Степень декристаллизации каучука проверяют путем погружения в кипу металлической иглы при постоянном давлении, если игла не может проколоть кипу за определенное время, то кипа поступает на повторную декристаллизацию.

Каучуки, разрезанные на куски, обычно декристаллизуют в распарочных камерах непрерывного действия, обогреваемых воздухом. (схема1)

Схема 1.

Воздушная камера непрерывного действия для декристаллизации НК

1— теплоизолирующие стенки камеры; 2 —подвесной конвейер; 3 входной и выходной проемы для конвейера; 4 — натяжная станция конвейера; 5, 7 — рольганги; 6 — вертикальные ножи для резки каучука; 8 — наружная ветвь конвейера; 9 — отборочный ленточный транспортер; 10 — помещение для установки вентиляторов, создающих тепловую завесу.

Принцип действия

Кипы НК рольгангом 7 подаются к гидравлическим ножам вертикального типа, где режутся на 6 частей. Рольгангом 5, нарезанные куски НК подают на подвесной конвейер 2 (он расположен в несколько ярусов) и далее через входное отверстие в разогревательную камеру 1. Разогретые куски проходят всю камеру (продолжительность прогрева зависит от температуры в камере и закристаллизованности каучука, например, НК при1000С 4 -6ч) и сбрасываются на отборочный ленточный траспортер. НК режут на вертикальных или вертикальных ножах с гидравлическим приводом, которые иногда имеют многолучевые головки, на которых закреплено несколько радиально расположенных лезвий. Брикеты или рулоны синтетического каучука режут с помощью дисковых ножей, которые имеют до 4-х дисковых устройств.

Технические способы пластикации каучука.

1. Термопластикация каучуков.

Ее проводят при повышенной температуре и в присутствии кислорода. При правильном выборе оптимальных температуры и давления процессы деструкции могут преобладать над структурированием. В основном, термопластикации подвергают жесткие высокомолекулярные, нерегулярные каучуки (например бутадиен-стирольные). Процесс проводят в котлах при температуре 120 – 1400С и давлении 0,25 – 0,30МПа, где каучук раскладывается в виде тонких полосок на металлических противнях. При термопластикации, в отличие от механической пластикации (разрыв наиболее длинных молекул, преимущественно в средней части, без увеличения низкомолекулярных фракций, сужение ММР, что приводит к повышению эластических свойств), происходит глубокое окисление и деструкция полимера, с увеличением низкомолекулярных фракций (из-за этого понижаются эластические и прочностные свойства вулканизатов, поэтому они уступают вулканизатам на основе механических пластикатов).

Пластикация в червячных машинах

Червячные машины предназначены для пластикации, гранулирования каучуков, приготовления резиновых смесей и их формования, являются наиболее производительным оборудованием для пластикации натурального каучука и применяются на крупных предприятиях. Процессы в этих аппаратах непрерывные.

По конструкции эти аппараты подразделяют на одностадийные (с одним червяком) и двухстадийные (с двумя червяками цилиндры, которых могут быть расположены друг над другом, на двух параллельных осях или последовательно на одной оси).

Схема 2.

Продольный разрез двухстадийного пластикатора:

1 – головка; 2 – наконечник червяка; 3 – стальной стакан цилиндра; 4 – передний цилиндр; 5 – задний цилиндр; 6 – червяк; 7 – загрузочная воронка; 8 – упорный подшипник; 9 – трубка для подачи охлаждающей воды в корпус опорного подшипника; 10 – большая приводная шестерня; 11 – труба для подачи пара или воды в полость червяка; 12 – роликовые опорные подшипники; 13 – станина; 14 – регулирующий винт механизма для осевого перемещения цилиндров пластикатора; 15 – диск для осевого перемещения цилиндров пластикатора; 16 – стойка выносного подшипника; 17 – выносной подшипник.

Принцип работы:

Червяк 6 двухстадийного пластикатора с последовательным расположением цилиндров на одной оси в зоне загрузки (задний цилиндр 5) имеет треугольную нарезку с большим шагом у первых витков, а в зоне пластикации (передний цилиндр 4) — нарезку в форме неравнобокой трапеции с переменным уменьшающимся шагом. Перемещая с помощью диска 15 и регулирующего винта 14 вдоль оси передний цилиндр вместе с головкой, можно изменять размер выходного отверстия для пластиката и одновременно толщину стенки трубчатой формы пластиката.

В головке 1 расположен наконечник 2, который с помощью резьбового соединения закреплен в червяке, составляя продолжение червяка и выполняя роль дорна. Наконечник, выходящий из головки, закрепляется в подшипнике 17 на стойке 16. Червяк вращается в роликовых опорных подшипниках 12. Осевые усилия, возникающие при работе червяка, воспринимаются упорным подшипником 8.

Вращение червяку передается от большой приводной шестерни 10, насаженной на вал червяка и находящейся в зацеплении с малой приводной шестерней, в свою очередь насаженной на выходной вал редуктора, который присоединен к электродвигателю мощностью около 500 кВт.

В процессе работы внутренняя поверхность цилиндра изнашивается быстрее других деталей, поэтому внутри цилиндров запрессовываются стальные стаканы 3, имеющие ребристую поверхность, для более интенсивной обработки каучука. По мере износа стаканы заменяются.

Для поддержания температурного режима пластикации основные детали машины охлаждают или напревают. Так, во внутреннюю полость червяка непрерывно подают холодную или горячую воду; отработанную воду отводят через внешнюю трубу. Полость наконечника 2, цилиндры 4 и 5, головку 1 и мундштук охлаждают или обогревают водой, подаваемой в рубашки. Такую же систему охлаждения имеет упорный подшипник 8.

Машина работает в следующей последовательности. Каучук в виде кип или кусков загружают в воронку 7, имеющую пневматический толкатель. Нарезкой червяка в цилиндре 5 (первая зона пластикации) он захватывается и перемещается при значительном давлении к цилиндру 4.