Смекни!
smekni.com

Неразрушающий контроль. Акустическая дефектоскопия (стр. 5 из 6)

Схема контроля локальным методом свободных колебаний (в этом варианте его называют просто методом свободных колебаний) показана на рис. 7, в. В части контролируемого изделия, например слоистой панели, возбуждают колебания с помощью ударов молоточком вибратора 10 и анализируют спектр возбуждаемых частот спектроанализатором 9, В дефектных изделиях спектр, как правило, смещен в сторону высоких частот.

Локальный метод вынужденных колебаний обычно называют резонансным методом. В стенке изделия с помощью пьезопреобразователя возбуждают ультразвуковые волны (рис. 7, б). Частоту колебаний модулируют; фиксируют частоты, на которых возбуждаются резонансы колебаний. По резонансным частотам определяют толщину стенки изделий и наличие дефектов. Дефекты, параллельные поверхности изделия, вызывают по- погрешность измеряемой толщины, а расположенные под углом к поверхности — исчезновение резонансных явлений. Для вы- высокоточного измерения толщины труб также применяют локальный метод свободных колебаний, получивший название метод предеф.

К методам вынужденных колебаний относят акустико- топографический метод, основанный на регистрации распределения амплитуд упругих колебаний на поверхности контролируемого объекта с помощью наносимого на поверхность порошка. На дефектном участке оседает меньшее количество порошка, что объясняется увеличением амплитуды колебаний в результате резонансных явлений.

3.2 Пассивные методы

Переходя к пассивным акустическим методам контроля, отметим акустико-эмиссионный метод, при котором используют бегущие волны (рис. 7, г). Этот метод основан на анализе параметров упругих волн акустической эмиссии, возникающих в результате динамической локальной перестройки объекта контроля. Такие явления, как возникновение и рост трещин, аллотропические превращения, движение скоплений дислокаций — наиболее характерные источники волн акустической эмиссии. Контактирующие с изделием пьезопреобразователи, принимающие упругие волны, позволяют установить наличие источника эмиссии, а при обработке сигналов от нескольких преобразователей — и расположение источника.

К пассивным акустическим методам, основанным на возбуждении стоячих волн или колебаний объекта контроля, относятся вибрационно-диагностический и шумо-диагностический методы. При использовании первого метода анализируют параметры вибрации какой-либо отдельной детали или узла (ротора, подшипника, лопатки турбины) с помощью приемников контактного типа; при использовании второго изучают спектр шумов работающего механизма на слух или с помощью микрофонных приемников.

По частотному признаку все рассмотренные акустические методы делят на низкочастотные и высокочастотные. К первым относят колебания в звуковом и низкочастотном (до нескольких десятков килогерц), ультразвуковом диапазонах частот; ко вторым — колебания в высокочастотном (от нескольких сотен килогерц до 50 МГц) ультразвуковом диапазоне частот. Высокочастотные методы обычно называют ультразвуковыми. Для контроля металлов преимущественно используют высокочастотные методы.

Из рассмотренных акустических методов контроля наибольшее практическое применение находит эхо-метод: им проверяют до 90 % всех объектов. Применяя волны различных типов, с его помощью решают задачи дефектоскопии поковок, литья, сварных соединений, многих неметаллических материалов. Эхо-метод используют также для измерения геометрических размеров изделий. Фиксируя время прихода донного сигнала и зная скорость ультразвука в материале, определяют толщину изделия при одностороннем доступе. Если толщина изделия известна, то по донному сигналу измеряют скорость, оценивают затухание ультразвука, а по этим параметрам определяют физико-механические свойства материалов.

Зеркально-теневой метод используют вместе или в дополнение к эхо-методу для выявления дефектов, слабо отражающих ультразвуковые волны в направлении совмещенного преобразователя (см. рис. 6, а). Такие дефекты, как вертикальные трещины, ориентированные перпендикулярно поверхности, по которой перемещают преобразователь (поверхности ввода), дают очень слабый рассеянный сигнал, в связи с чем эхо-методом не выявляются. В то же время они ослабляют донный сигнал благодаря тому, что на их поверхности продольная волна трансформируется в вытекающую, которая в свою очередь излучает боковые волны, уносящие энергию.

Зеркально-теневой метод применяют, например, при контроле рельсов с целью обнаружения вертикальных трещин в шейке. Им выявляют дефекты большего размера, чем эхо-методом. Преимущество этого метода перед зеркально-теневым заключается в одностороннем доступе к поверхности изделия. Зеркальный эхо-метод применяют также для выявления дефектов, ориентированных перпендикулярно поверхности ввода. Им выявляют более мелкие дефекты, чем зеркально-теневым, но при этом требуется, чтобы в зоне расположения дефектов был достаточно большой участок ровной поверхности (см. рис. 5, б). При контроле рельсов, например, это требование не выполняется, поэтому возможно применение только зеркально-теневого метода. Дефект В можно выявить совмещенным наклонным преобразователем, расположенным в точке А. Однако в этом случае зеркально отраженная волна уходит в сторону и на преобразователь попа- попадает лишь слабый рассеянный сигнал. Преобразователи, расположенные в точках С или D, обнаруживают дефект с более высокой чувствительностью.

Зеркальный эхо-метод в варианте тандем используют для выявления вертикальных трещин и непроваров при контроле сварных соединений. Дефекты некоторых видов сварки, например непровар при электронно-лучевой сварке, имеют гладкую отражающую поверхность, очень слабо рассеивающую ультразвуковые волны. Такие дефекты лучше выявляются зеркальным эхо-методом. Дефекты округлой формы (шлаковые включения, поры) дают большой рассеянный сигнал и хорошо регистрируются сов- совмещенным преобразователем в точке A; в то же время зеркальное отражение от них слабое. Сравнивая отраженные сигналы в точках А и D, определяют форму дефекта сварного соединения.

Вариант тандем-дуэт применяют, когда расположение преобразователей в одной плоскости затруднительно. Его используют, например, для выявления поперечных трещин в сварных швах. Преобразователи в этом случае располагают по разные стороны выпуклости («усиления») шва. Углы

и
выбирают либо малыми — до 10°, либо большими — более 35° для предотвращения трансформации поперечных волн в продольные. При углах менее 10° трансформация мала; угол, равный 35° и больше, превосходит значение третьего критического угла, в связи с чем трансформация отсутствует. Существуют варианты с
: например, излучают поперечную волну с
, а принимают трансформированную продольную волну.

3.3 Области применения методов

Дельта-метод также используют для получения дополнительной информации о дефектах при контроле сварных соединений. В варианте, показанном на рис. 5, в, излучают поперечные, а принимают продольные волны. Эффективная трансформация поперечных волн в продольные на дефекте произойдет, если угол падения на плоский дефект меньше третьего критического или если продольная волна возникает в результате рассеяния на дефекте. Для создания хорошего контакта приемного прямого преобразователя с поверхностью сварного соединения поверхность выпуклости шва зачищают. С помощью этого метода довольно точно определяют положение дефекта вдоль сварного шва, что очень важно при его автоматической регистрации.

Эхо-теневой метод также применяют при контроле сварных соединений. При автоматическом контроле преобразователи, располагаемые по обе стороны от шва, принимают как отраженные, так и прошедшие сигналы. Последние используются для контроля качества акустического контакта и обнаружения дефектов, ориентированных таким образом, что эхо-сигналы от них очень слабы.

Контроль теневым и эхо-сквозным методами возможен только при двустороннем доступе к изделию. Эти методы применяют для автоматического контроля изделий простой формы (например листов) в иммерсионном варианте. Перемещение листа вверх и вниз между преобразователями в иммерсионной ванне (рис. 4, а, в) не изменяет времени прохождения сигналов от излучателя к приемнику, что существенно упрощает конструкцию установки. Теневым методом выявляют более крупные дефекты, чем эхо- и эхо-сквозным методами, в связи с большим влиянием помех.

Теневой метод применяют также для контроля изделий с боль- большим уровнем структурных реверберации, т. е. помех, обусловленных отражением ультразвука от структурных неоднородности, крупных зерен. Сквозной сигнал попадает на приемник раньше, чем структурные реверберации, что позволяет его зарегистрировать на фоне помех. При контроле тонких изделий с очень высоким уровнем структурных помех более мелкие дефекты выявляют временным теневым методом. Теневой и временной теневой методы позволяют обнаруживать крупные дефекты в материалах, где контроль другими акустическими методами невозможен: крупнозернистой аустенитной стали, сером чугуне, бетоне, огнеупорном кирпиче. Теневой метод применяют вместо эхо-метода при исследовании физико-механических свойств материалов с большими коэффициентами затухания и рассеяния акустических волн, например, при контроле прочности бетона по скорости ультразвука. Для этой цели применяют не только теневой метод, но и (в более общем виде) метод прохождения. Например, излучатель и приемник располагают с одной стороны изделия на одной поверхности и измеряют время и амплитуду сквозного сигнала головной или поверхностной волны.