Смекни!
smekni.com

Практичне використання законів розподілу розмірів для аналізу точності обробки (стр. 2 из 4)

Таблиця 2

Підрахунок частот емпіричного розподілу

Інтервали розмірів

Середина

інтервалу xi
Підрахунокчастот

Частота

ni
від до
80,225 80,231 80,228 1 1
80,231 80,237 80,234 11111111 8
80,237 80,243 80,240 111111111111111111 18
80,243 80,249 80,246 11111111111111111111111111 26
80,249 80,255 80,252 1111111111111111111111 22
80,255 80,261 80,258 11111111111 11
80,261 80,267 80,264 11 2
Всього 88

Рис. 3. Гістограма (1), емпірична крива (2) та теоретична крива нормальногорозподілу (3) розмірів деталей

На основі полігону розподілу похибок за гіпотезу теоретичного розподілу частот досліджуваного параметра приймаємо закон нормального розподілу.

Визначення основних параметрів прийнятого закону розподілу.

За оцінку основних параметрів закону нормального розподілу використовують вибіркове середнє арифметичне значення досліджуваного параметра

і вибіркове середнє квадратичне відхилення S, які обчислюються за формулами (2.3) та (2.2):

;

.

Для полегшення підрахунків використовуємо табл. 3.

Таблиця 3

Допоміжна таблиця для обчислення

і S вибірки

Інтервали

розмірів

Середина

інтервалуxi

Частота

mi
ximi
від до
80,225 80,231 80,228 1 80,228 0,019 0,000361 0,000361
80,231 80,237 80,234 8 641,872 0,013 0,000169 0,001352
80,237 80,243 80,240 18 1444,32 0,007 0,000049 0,000882
80,243 80,249 80,246 26 2086,396 0,001 0,000001 0,000026
80,249 80,255 80,252 22 1765,544 0,005 0,000025 0,00055
80,255 80,261 80,258 11 882,838 0,011 0,000121 0,001331
80,261 80,267 80,264 2 160,528 0,017 0,000289 0,000578
Всього 88 7061,726 0,00508

Вибіркове середнє арифметичне значення

дорівнює:

мм,

а вибіркове середнє квадратичне відхилення S:

мм.

7.Порівняння емпіричного розподілу з теоретичним та побудова теоретичної кривої

За зовнішнім виглядом емпіричної кривої можна приблизно встановити закон розподілу похибок в генеральній сукупності. Для більш точного висновку необхідно співставити емпіричну криву з кривою, що передбачається теоретично. З цією метою для кожного інтервалу значень необхідно обчислити теоретичні частоти або частості і по них побудувати теоретичну криву розподілу.

При побудові теоретичної кривої нормального розподілу приймається, що

і σ = S.

Теоретичну частоту обраховуємо за формулою:

.

Величина Zt обчислена для різних значень t і наведена в додатку 1. Значення t для кожного інтервалу розмірів знаходяться за формулою:

.

Отже, для підрахунку теоретичних частот необхідно для кожного інтервалу розмірів за формулою визначити значення t, за таблицею додатку 1 знайти Zt i потім скористатися формулою. При підрахунку теоретичних частот доцільно використовувати допоміжну табл. 4.

Таблиця 4

Обчислення теоретичних частот нормального розподілу

Інтервали розмірів

Середина

інтервалуxi

Частота

mi
t Zt Теоретичначастота
Теоретичначастота
(зокругленням)
від до
80,225 80,231 80,228 1 0,019 2,5 0,0175 1,2 1
80,231 80,237 80,234 8 0,013 1,71 0,0925 6,4 7
80,237 80,243 80,240 18 0,007 0,92 0,2613 18,2 18
80,243 80,249 80,246 26 0,001 0,13 0,3956 27,5 28
80,249 80,255 80,252 22 0,005 0,66 0,3209 22,3 22
80,255 80,261 80,258 11 0,011 1,45 0,1394 9,7 10
80,261 80,267 80,264 2 0,017 2,24 0,0325 2,3 2
Всього 88 88

Для точної побудови теоретичної кривої нормального розподілу обчислюють координати характерних точок кривої нормального розподілу за формулами, які наведені в табл. 2.3 і будується табл. 5

Таблиця 5

Координати характерних точок кривої нормального розподілу

Характерніточки Абсциса Ордината
Вершинакривої
80,247
28
Точкаперегину
80,2546
17
80,2394
Точкаперегину
80,2622
4
80,2318
Точкаперегину
80,2698
0
80,2242

Графік теоретичної кривої нормального розподілу поєднується з гістограмою та емпіричною кривою, тобто зображається на рис. 3.

8. Перевірка гіпотези про розподіл випадкової величини

Для перевірки відповідності емпіричного розподілу теоретичному існує ряд критеріїв. В даному прикладі з цією метою використовується критерій Персона χ2:

.

Для зручності обчислення доцільно використовувати табл. 6


Таблиця 6

Допоміжна таблиця для обчислення критерію χ2

Інтервали розмірів

Середина

інтервалухi

Частота

mi
Теоретичначастота
від до
80,225 80,231 80,228
1 1 0,125
80,231 80,237 80,234
80,237 80,243 80,240 18 18 0 0 0
80,243 80,249 80,246 26 28
-2 4 0,143
80,249 80,255 80,252 22 22 0 0 0
80,255 80,261 80,258
1 1 0,083
80,261 80,267 80,264
Всього 88 88 0,351

При визначенні критерію необхідно, щоб частота була не менше п’яти. Якщо в будь-якому інтервалі частота буде менше п’яти, то її необхідно об’єднати з сусіднім значенням.

Потім необхідно знайти число k за формулою:

k = m – p – 1,

де p – число параметрів теоретичного розподілe. Для нормального розподілe p=2.

За таблицею додатку Б за знайденими значеннями χ2 і k визначається ймовірність P(x2). Якщо буде виконуватися нерівність Р(χ2) > 0.05, то можна вважати, що емпіричній розподіл відповідає теоретичному (нормальному) і можна використовувати його закономірності для аналізу точності обробки.

Якщо вказана нерівність виконуватися не буде, то як теоретичний розподіл потрібно використовувати інший закон розподілу.