Смекни!
smekni.com

Практичне використання законів розподілу розмірів для аналізу точності обробки (стр. 3 из 4)

В наведеному прикладі:

χ2 = 0,351;

k=5 – 2 – 1=2;

Р(χ2) =0,8 > 0,05.

Відповідно можна вважати, що розподіл розмірів відповідає нормальному закону.

9. Визначення ймовірності відсотка браку при виконанні операції, що досліджується.

Для нормального розподілу поле розсіювання похибок (в генеральній сукупності) визначається за формулою:

Δp = 6σ. (14)

Вибіркове середнє квадратичне відхилення S є наближеною оцінкою середньоквадратичного відхилення випадкової величини σ. Похибка оцінки σ по S залежить від обсягу вибірки.

Враховуючи цю обставину, необхідно при використанні формули (14) значення σ визначати із співвідношення (2.6):

σ = γS,

де γ – коефіцієнт, який приймається в залежності від обсягу вибірки.

Необхідною умовою обробки деталі без браку є виконання двох умов (1) та (2):

а) перевірка першої умови за (1):

;Tn < 1;

б) перевірка другої умови за (2)

мм,

де

мм;

мм;

мм;

;

;

eфакт ≤ едоп.

Одна з умов (перша) не виконується. Отже уникнути браку неможливо, необхідно розрахувати величину ймовірного браку.

Якщо задані допуск на розмір і граничні розміри деталі за кресленням xв і хн, то ймовірний відсоток браку буде рівним:

– по верхній границі поля допуску:

Рб.в = [0,5 – Ф(tв)] ∙ 100 %;(15)

– по нижній границі поля допуску:

Рб.н = [0,5 – Ф(tн)] ∙ 100 %. (16)

У формулах (15) і (16):


(17)

У наведеному прикладі:

σ = 1,21 ∙ 0,0076 = 0,0092 мм;

Δp = 6 ∙ 0,0092 = 0,055 мм;

; Ф(tв) = 0,4940;

;Ф(tн) = 0,4980;

– по верхній границі поля допуску (виправний брак):

Рб.в = [0,5 – 0,4940] ∙ 100 % = 0,6 %;

– по нижній границі поля допуску (невиправний брак):

Рб.н = [0,5 – 0,4980] ∙ 100 % = 0,2 %.

Отже, можливий брак складає:

Рб = Рб.в + Рб.н = 0,6 + 0,2 =0,8 %,

що дорівнює 1 деталі при розмірі вибірки N = 88.

Отже, точність технологічної операції недостатня і ймовірний відсоток браку складає 0,8%, процес обробки ненадійний, хоча точність налагоджування виконана правильно.

Технологічний допуск, який можна витримати на даній операції, при обробці деталі без браку згідно з першою умовою п. 1.2 складає:

Т = 1,12Δр = 1,12×0,055 = 0,062 мм.

Визначення ймовірної кількості браку при розподілі розмірів за функцією a(t)

У випадку, коли розсіювання розмірів заготовок викликається не тільки випадковими, але й змінними систематичними похибками і розподіл розмірів підкоряється функції a(t) з параметрами σa і λa, порядок обчислення ймовірної кількості браку при Δp > T принципово нічим не відрізняється від розрахунку при розподілі розмірів за законом Гаусса.

Також, як і при нормальному розподілі, ймовірна кількість бракованих заготовок визначається сумою заштрихованих ділянок площі, обмеженої кривою функції a(t), при симетричному розташуванні кривої розподілу по відношенню до поля допуску (рис. 4, а) або величиною заштрихованої ділянки цієї площі при однобічному виході бракованих заготовок за межі поля допуску (рис. 4, б).

Рис. 4. Кількість ймовірного браку при симетричному (а) та несиметричному (б) розташуванні поля розсіювання, обмеженого кривою функції a(t), відносно середини поля допуску

Аналогічно закону Гаусса функцію a(t) можна виразити в нормованому вигляді за допомогою нормованого параметра розподілу, який у даному випадку визначається за формулою:

, (18)

де σa – середнє квадратичне відхилення функції.

Після відповідних перетворень функція

a(t) = Ф(ta, λa) (19)

табулюється.

При симетричному розташуванні кривої розподілу функції a(t) відносно середини поля допуску (рис. 4, а) розміри заштрихованих ділянок площі (а, отже і частку браку) визначають послідовним розрахунком величин:

;
;
і ta за формулою (18).

За встановленими значенням λa і ta (по таблиці додаток 4 ) знаходять Ф(λa,ta), що виражає у частках одиниці половину загальної кількості придатних заготовок (незаштрихована ділянка площі на рис. 4, а, розташована по один бік середини поля допуску), і розраховують загальну кількість бракованих заготовок у відсотках за формулою:

Qбр = 100 % ∙ [1 – 2Ф(ta, λa)]. (20)

Приклад

На револьверному верстаті обробляють 300 шт. валиків зі сталі 45. Розміри заготовок Æ25х40 мм. Допуск на обробку – 0,1 мм. Матеріал різця – Т30К4. Режим різання: V = 150 м/хв; подача S = 0,08 мм/об; t = 0,5 мм.

При обробці пробної партії заготовок експериментально встановлено і підраховано, що розсіювання розмірів заготовок при обробці на даному верстаті характеризується середнім квадратичним відхиленням σ = 0,025 мм.

Визначити кількість придатних і бракованих заготовок при умові, що настроювання верстата забезпечує симетричне розташування кривої розсіювання відносно середини поля допуску.

Розв’язання

У зв’язку з тим, що за рахунок зношування різця при обробці 300 шт. заготовок відбувається безперервне зміщення вершини кривої розсіювання Гаусса вправо (в бік збільшення розмірів), вважаємо, що фактичний розподіл розмірів підкоряється функції a(t) і за умовами задачі відповідає схемі, зображеній на рис. 4, а.

1. Зміщення центра групування 2l кривої визначається збільшенням діаметра оброблюваних заготовок, зношуванням різця під час обробки заготовок, тобто 2l= 2i, де у відповідності з формулою (2.5) [3, табл. 2.1]: n = 300 шт.

; io = 6,5 мкм.

Шлях різання

при обробці n = 300 шт. заготовок дорівнює

мм;

зношування

мм;

l = i = 0,083 мм.

Зміщення центра групування 2l =0,166 мм.

2. За формулою:

.

3. Середнє квадратичне відхилення функції a(t) за формулою:


мм.

4. Поле розсіювання для a(t) при λa= 3:

Δp = 4,74σa = 4,74 ∙ 0,054 = 0,256 мм

значно перевищує поле допуску Т = 0,1 мм, тому при обробці всієї партії заготовок без підналагодження верстата брак є технічно неминучим (рис. 4, а).

5. Для визначення кількості ймовірного браку обчислюється значення ta за формулою (18):

.

Кількість придатних деталей при λa = 3,0 і ta = 0,926 (див. додаток 4):

Q = 2Ф(ta, λa) = 2 ∙ 0,2969 = 0,5938,

тобто 59,38 % від всієї партії, або 178 шт. Брак заготовок – 40,62 % або 122 шт.

Як бачимо, брак великий (40,62 %).

Для зменшення браку доцільно замінити різець з твердого сплаву Т30К4 більш стійким різцем з ельбору, який має відносне зношування io = 3,0 мкм при V= 550 м/хв і S = 0,06 мм/об (див.[3, табл. 2.1]).

В цьому випадку шлях різання при обробці однієї заготовки зростає:

м,

проте зношування різця при обробці партії знижується до

мм

і l= 0,0501 мм.

Відповідно зменшується:

мм

і поле розсіювання

Δp = 4,74σa = 4,74 ∙ 0,038 = 0,181 мм.

При цьому збільшуються

;

Q = 2Ф(ta, λa) = 2 ∙ 0,3984,

тобто 79,7 % партії заготовок чи 239 шт. є придатними. Брак у цьому випадку складає 20,3 %, чи 61 шт., тобто стає у два рази меншим, ніж при обробці різцем з твердого сплаву.

Великі переваги застосування ельбору у порівнянні з твердим сплавом пов’язані не тільки зі значним підвищенням точності обробки, але й з одночасним зростанням її продуктивності за рахунок збільшення швидкості різання із 150 до 550 м/хв.

Досить часто при обробці заготовок в умовах одночасної дії випадкових і змінних систематичних похибок настроювання верстата проводять за першими пробними заготовками без врахування наступного зношування різця та зміщення центра групування. При цьому крива розподілу розмірів оброблених заготовок розташовується так, що її початок збігається з однією з границь поля допуску (рис. 4, б). В цьому випадку кількість бракованих заготовок у відсотках визначається площею заштрихованої ділянки, розташованої з одного боку за межами поля допуску, тобто:

Qбр = [0,5 – 2Ф(ta, λa)] ∙ 100 %,(21)

а кількість придатних заготовок Q – сумою площ А = 0,5 і В = Ф(λa,ta), тобто:

Q = [0,5 + Ф(ta, λa)] ∙ 100 %. (22)

Приклад