Смекни!
smekni.com

Расчет коническо-цилиндрического редуктора (стр. 1 из 3)

Таганрогский технологический институт южного федерального университета

Естественно научный гуманитарный факультет

Кафедра механики

Пояснительная записка

к курсовому проекту по курсу детали машин и основы конструирования

Выполнил: ст. гр. Н-28

Кузнецов А.Ю.

Проверил:

Дроздов Ю.А.

Таганрог 2011


Содержание:

Техническое задание

Введение

Основная часть

Заключение

Список источников


Техническое задание

Рассчитать редуктор по схеме (рис.1) со следующими данными:

– мощность N=20 кВт;

– угловая скорость вращения: ω=2,82 сˉ¹.

1. Электродвигатель

2. Плоскоременная передача

3. Муфта

4. Коническо-цилиндрический редуктор

5. Рама

Рис.1. Схема редуктора


Введение

Детали машин - научная дисциплина, включающая теорию, расчет и конструктивные расчеты общего назначения. В ней изучаются кинематические расчеты, основы расчета на прочность и жесткость, методы конструирования. Системы управления в условиях больших скоростей и высот полета самолета поставили конструктора перед задачей по обеспечению их надежной работы. Основными критериями качества механизма и машин является надежность - комплексное свойство, которое может включать безотказность, долговечность, сохраняемость.

Установлено, что при современном уровне техники 85% машин выходят из строя в результате изнашивания – процесс постепенного изменения размеров детали в результате трения, и только 10-15% по другим причинам. Обеспечение износостойкости изделий регламентировано системой ГОСТов, в частности и определением относящиеся к трению, изнашиванию и смазке - ГОСТ 23002-78.

Системы управления авиационной техники выполняют сложные задачи, для правильного решения которых требуются необходимая мощность для применения органов управления статической и динамической устойчивости.

Весь комплекс систем Л.А. состоит из большого количества различных агрегатов и узлов, точное и правильное изготовление которых и определяет надежность и точность эксплуатации Л.А.


1 Выбор двигателя

Номинальная мощность двигателя

.

Номинальная частота вращения

Определение передаточного числа привода и его ступеней

где U – передаточное число привода;

– частота вращения рабочей машины. Определяем её по формуле

Отсюда

– передаточное число зубчатой-цилиндрической передачи;

передаточное число конической-зубчатой передачи.

– передаточное число цепной передачи.

Выбор материала зубчатых передач и определение допустимых напряжений

Зубчатое колесо сталь 40ХН

Твердость сердцевины – 269-302

поверхности – 269-302

Выбираем предельные значения размеров заготовки шестерни и колеса:

заготовка шестерни

заготовка колеса

Расчеты цилиндрических зубчатых передач редуктора

Коэффициент межосевого расстояния -

=49.5

Коэффициент ширины -

=0,315

Коэффициент ширины -

=0,5
+1)= 0,7875

Коэффициент конструкции

=1+2
2,0

=1+2
1,394

Межосевое расстояние

:

+1)

1.2 Предварительные основные размеры колеса делительный диаметр

– ширина венца колеса:

1.3 Модуль передачи

определяем модуль зацепления m:


- вспомогательный коэффициент для косозубых передач

округляем полученное значение

до стандартного:

1.4 Угол наклона и суммарное число зубьев

Min угол наклона зубьев

Cуммарное число зубьев:

Истинное значение угла

1.5 Число зубьев шестерни

число зубьев колеса внешнего зацепления:

1.6 Фактическое передаточное число:

отклонение Δ

от заданного
:

Δ

.

Δ

.

1.7 Размеры колес:

делительный диаметр шестерни:

внутреннего зацепления:

диаметр окружности вершин

и впадин зубьев
шестерни:

колесо внешнего зацепления:

1.8 Силы в зацеплении

- окружная сила в зацеплении:

- радиальная сила в зацеплении:

- осевая сила в зацеплении:

1.9 Проверка звеньев колес по напряжениям

Степень точности передач принимают в зависимости от окружной скорости колес

- окружная скорость:

Коэффициент

вычисляют по формуле

Коэффициент ширины:

При твердости зубьев колеса НВ > 350 коэффициент:

Значение коэффициента

принимают для косозубых колес при твердости зубьев ≤ 350НВ – 1,2 Коэффициент формы зуба
принимают по таб.: