Смекни!
smekni.com

Проектирование вертикально-сверлильного станка (стр. 1 из 4)

Кафедра станков

КУРСОВОЙ ПРОЕКТ

на тему: «Проектирование вертикально-сверлильного станка»


Аннотация

Данный курсовой проект был разработан студентом четвертого курса машиностроительного факультета, группы. Было предложено спроектировать вертикально-сверлильный станок, по следующим данным:

- класс точности – нормальный;

- наибольший условный диаметр сверления – 18 мм.;

- наибольший ход шпинделя – 100 мм.;

- материал обрабатываемых изделий – сталь-чугун;

Курсовой проект содержит:

- пояснительную записку, из 29 листов, в которой было рассмотрено:

а) определение основных технических характеристик станка; б) проектирование кинематики станка, выбор компоновки; в) динамические и прочностные расчёты узлов, разрабатываемых конструктивно; г) описание структурной и кинематических схем, настройки станка; д) описание конструкции спроектированных узлов и систем станка;

- графический материал, содержащий четыре листа формата А1: кинематическая схема станка, развёртка привода главного движения, свёртка провода главного движения и коробка подач;

- спецификация привода главного движения;


Содержание

Введение. 4

1. Литературный обзор. 5

2. Определение основных технических характеристик станка. 8

3. Синтез и описание кинематической структуры станка. 10

4. Выбор и описание компоновки станка. 11

5. Проектирование и описание кинематической схемы станка. 14

5.1 Проектирование кинематики привода главного движения. 14

5.2 Проектирование кинематики привода подач. 17

6. Динамические, прочностные и другие необходимые расчёты проектируемых узлов22

7. Описание конструкции спроектированных узлов. 35

8. Описание системы смазки спроектированных узлов. 36

9. Описание системы управления станком. 38

10. Заключение. 40

Список использованной литературы.. 41


Введение

Современные металлорежущие станки - это высокоразвитые машины, включающие механические, электрические, электронные, гидравлические, пневматические и другие методы осуществления движением и управления циклом.

По конструкции и назначению трудно найти более разнообразные машины, чем металлорежущие станки. На них обрабатывают всевозможные детали – от мельчайших элементов часов и приборов до деталей, размеры которых достигают многих метров (турбины), прокатных станов. На станках обрабатывают и простые цилиндрические, и поверхности, описываемые сложными математическими уравнениями или заданные графически. При этом достигаются высокая точность обработки, измеряемая нередко долями микрометра. На станках обрабатывают детали из сталей и чугунов, из цветных, специальных жаропрочных, мягких твердых и других материалов. Современное станкостроение развивается быстрыми темпами. В решениях правительства по развитию станкостроения особое внимание обращено на опережающее развитие выпуска станков с числовым программным управлением, развитием производства тяжелых и уникальных станков.

Сверлильные станки предназначены для сверления глухих и сквозных отверстий, рассверливания, зенкерования, развертывания, растачивания и нарезания резьбы. Сверлильные станки подразделя­ются на вертикально-сверлильные настольные и наклонные, радиально-сверлильные, для глубокого сверления, центровальные и многошпиндельные.

1. Литературный обзор

Общий вид наиболее распространенного универсального одношпиндельного вертикально-сверлильного станка показан на рис. 1. Станок пред­назначен для работы в основных производственных цехах, а также в условиях единичного и мелкосерийного производства, в ремонтно-механических и инструментальных цехах.

вертикальный сверлильный станок кинематический

Рис.1 Вертикально-сверлильный станок.

На фундаментной плите 1 смонтирована колонна 3 коробчатой формы. В ее верхней части размещена шпиндельная головка 6, несущая электродвиатель 5 и шпиндель 7 с инструментом 8. На вертикальных направляющих колонны установлена шпиндельная бабка 4, внутри которой размещён механизм подачи, осуществляющий вертикаль­ное перемещение шпинделя. Поднимать и опу­скать шпиндель можно механически и вручную, с помощью штурвала 2. Для установки и закрепления приспособления с обрабатываемыми заготовками имеется стол 9. Его устанавливают на различной высоте, в зависимости от разме­ров обрабатываемых деталей.

Синтез методов и кинематики формообразования поверхностей резанием

Кп+Сл Кп+Cл

ФV1) ФV1)

ФS2) ФS2)

Уст(П3) Уст(П3)


Кп+Кс

ФV1)

ФS2)

Уст(П3)

Основные технические характеристики вертикально-сверлильных станков, близких по типоразмеру:

Параметры 2А150 2Г175 2Н175М
Наибольший условный диаметр сверления в стали 50 75 75
Рабочая поверхность стола 500х560 560х630 710х1250
Наибольшее расстояние от торца шпинделя до рабочей поверхности стола 800 850 828
Вылет шпинделя 350 400 200-760
Наибольший ход шпинделя 300 - -
Наибольшее вертикальное перемещение
сверлильной (револьверной) головки 250 710 500
стола 360 - -
Конус Морзе отверстия шпинделя 5 6 1,2 или 3
Число скоростей шпинделя 12 12 12
Частота вращения шпинделя об/мин 22-1000 18-800 22-1000
Число подач шпинделя (револьверной головки) 12 33 12
Подача шпинделя (револьверной головки), мм/об 0,05-2,25 0,018-4,5 0,05-2,24
Мощность электродвигателя в кВт 7,0 11 11
Габаритные размеры:
длина 1355 1420 1500
ширина 890 1920 1800
высота 2930 3385 3650
Масса, кг. 1870 4250 5000

В качестве станка-прототипа выбираю вертикально-сверлильный станок 2А150 исходя из анализа его кинематики и технических характеристик.

2. Определение основных технических характеристик станка

1. Выбираем режущий инструмент

Спиральное сверло Dmax=18 мм и Dmin=3 мм. Материал режущей части быстрорежущая сталь Р6М5.

2. Назначаем режим резания

2.1 Назначаем подачи

Smin=0,1 мм/об

Smах=1,6 мм/об

2.2 Стойкость инструмента

Т=25 мин

2.3 Определяем допустимую скорость резания

при сверлении

где

Общий поправочный коэффициент на скорость резания, учитывающий фактические условия резания,

где


- поправочный коэффициент, учитывающий влияние физико-механических свойств обрабатываемого материала на скорость резания;

-- поправочный коэффициент, учитывающий влияние инструментального материала на скорость резания

-- коэффициент, учитывающий глубину

3. Синтез и описание кинематической структуры станка

Рис. 2 Структурная схема вертикально-сверлильного станка.

Основным формообразующими движениями при сверлильных операциях являются: главное – вращательное движение В1 и движение подачи П2 шпинделя станка. Кинематические цепи, осуществляющие эти движения, имеют самостоятельные органы настройки iv и is,посредством которых устанавливается необходимая скорость вращения инструмента и его подача.

Вращение шпинделя осуществляется по цепи: от электродвигателя М по коробки скоростей iv, которая обеспечивает 12 частот вращения, передаётся на шпиндель 2. (М- iv-2)

Подача осуществляется по цепи: от электродвигателя М через коробку скоростей iv, через коробку подач is, которая обеспечивает 9 подач, вращение сообщается реечному колесу К, которое передаёт вращение на пиноль шпинделя с рейкой t. (М- iv-1- is-К-t)


4. Выбор и описание компоновки станка

Компоновка станка в значительной степени влияет на технико-экономические показатели. От компоновки зависит: жёсткость конструкции; тепловой баланс и температурная деформация; универсальность станка и его переналаживаемость; металлоёмкость; трудоёмкость изготовления, сборки; ремонтопригодность.

Рассмотрим три варианта компоновки вертикально-сверлильного станка и выберем один:

Структурная формула данной компоновки: 0ZCv

Достоинства: жесткая конструкция станины.

Недостаток: ограниченные габариты обрабатываемой детали, трудность в сборки, при износе стола, куда устанавливается деталь, нету возможности замены его, при малых габаритах обрабатываемой детали уменьшается жесткость шпинделя, т.к. увеличивается величина вылета.