Смекни!
smekni.com

Расчет и проектирование редуктора общего назначения (стр. 2 из 4)

Шестерню выполняем для посадки на вал диаметром 45 мм, размеры ее определены ранее: d1 = 120 мм, da1 = 128мм, df1 = 110 мм, b1 = 45 мм, ширина ступицы шестерни 60 мм.

Колесо кованое d2 = 836 мм, da2 = 844 мм, df2 = 826 мм, b2 = 40 мм.


5. Расчет зубчатых колес редуктора

Так как в задании нет особых требований в отношении габаритов передачи, выбираем материалы со средними механическими характеристиками: для шестерни – сталь 45, термическая обработка – улучшение, твердость НВ 230; для колеса - сталь 45, термическая обработка улучшение, но твердость на 30 единиц меньше – НВ 200.

Допускаемые контактные напряжения

,

где σНlimb – предел контактной выносливости при базовом числе циклов.

Для углеродистых сталей с твердостью поверхностей зубьев менее НВ 350 и термической обработкой (улучшением)

σНlimb = 2НВ + 70;

КHL – коэффициент долговечности; при числе циклов нагружения больше базового, что имеет место при длительной эксплуатации редуктора, принимаем КHL = 1, коэффициент безопасности [SH] = 1,10.

Для косозубых колес расчетное допускаемое контактное напряжение определяется по формуле

;

для шестерни [σН1] = ((2НВ1+70)* КHL)/ [SH] = ((2*230+70)*1)/1,10=481,8 ≈ 482 МПа;

для колеса [σН2] = ((2НВ2+70)* КHL)/ [SH]=((2*200+70)*1)/1,10 = 427,3 ≈ 427 МПа.

Тогда расчетное допускаемое контактное напряжение

Н] = 0,45*(482+427) = 409,05 ≈ 409 МПа.

Требуемое условие [σН] ≤ 1,23[σН2] выполняется.

Коэффициент КНβ принимаем, как для случая несимметричного расположения колес, значение КНβ = 1,25, т.к. со стороны зубчатого колеса открытой передачи действуют силы, вызывающие дополнительную деформацию ведомого вала и ухудшающие контакт зубьев.

Принимаем для косозубых колес коэффициент ширины венца по межосевому расстоянию ψba = b/aw = 0,4.

Межосевое расстояние из условий контактной выносливости активных поверхностей зубьев определяется по формуле:

мм,

ближайшее значение межосевого расстояния по ГОСТ 2185-66 аw = 200 мм (второй ряд).

Нормальный модуль зацепления принимаем по следующей рекомендации:

mn = (0.01¸0.02) аw =200(0.01¸0.02) = 2,0¸4,0 мм, по ГОСТ 9563-60* принимаем mn = 2,0 мм.

Примем предварительно угол наклона зубьев b = 10° и определим числа зубьев шестерни и колеса

.

Принимаем z1 = 39 ; тогда z2 = z1 * u = 39 * 4 = 156

Уточненное значение угла наклона зубьев

β = 12°50´

Основные размеры шестерни и колеса:

диаметры делительные:

проверяем аw = (d1 + d2)/2 = (80+320)/2 = 200 мм;

диаметры вершин зубьев:

da1 = d1 + 2mn = 80 + 2*2 = 84 мм

da2 = d2 + 2mn = 320 + 2*2 = 324 мм

ширина колеса:

b2 = ψbaaw = 0.4*200 =80 мм,

ширина шестерни:

b1 = b2 + 5 = 80 + 5 = 85 мм,

определяем коэффициент ширины шестерни по диаметру:

ψbd = b1/d1 = 85/80 = 1.063.

Окружная скорость колес и степень точности передачи


м/с,

назначаем 8-ю степень точности и принимаем KHv = 1.0 ¸ 1.05 [1], значения остальных коэффициентов принимаем:

KHb = 1.04 (табл. 3.5[1]), K = 1.09 (табл. 3.4 [1]), KHv = 1,0 (табл. 3.6[1]), таким образом

KH = KHbKKHv =1.04*1.09*1.0 = 1.134

Проверяем контактные напряжения:

Силы, действующие в зацеплении:

окружная

радиальная

осевая

Fa =Fttgb = 3050*tg12°50´ = 695,10 Н


Проверка зубьев на выносливость по напряжениям изгиба

Коэффициент нагрузки

KF = KFb*KFv,

по таблице 3.7 [1] при ψbd =1,063, твердости НВ ≤ 350 и несимметричном расположении зубчатых колес относительно опор KFb= 1,31 . по таблице 3.8 KFv = 1.3. Таким образом, коэффициент KF = KFb*KFv = 1,31*1,3 =1,703; YF – коэффициент, учитывающий форму зуба и зависящий от эквивалентного числа зубьев zvу:

шестерни

колеса

YF1 = 3,61, YF2 =3,60.

Допускаемое напряжение

.

По таблице 3.9 [1] для стали 45 улучшенной при твердости НВ ≤ 350 σ°Flimb = 1.8 HB.

Для шестерни σ°Flimb = 1,8*230 =415 МПа, для колеса σ°Flimb =1,8*200 = 360 МПа. [SF] = [SF]'[SF]" – коэффициент безопасности, где [SF]' = 1,75 (табл. 3.9[1]), [SF]" = 1 (для поковок и штамповок), следовательно, [SF] = 1,75*1 = 1,75.

Допускаемые напряжения:

для шестерни [σF1] = 415/1.75 = 237 МПа;

для колеса [σF2] = 360/1,75 = 206 МПа.

Дальнейший расчет будем вести для зубьев колеса, т.к. для него данное отношение меньше.

Определяем значение коэффициентов Yb и K

Yb = 1-b°/140 = 1-12°50´/140 =0,908

K = [4+(εα – 1)(n-5)]/4εα

Для средних значений коэффициента торцового перекрытия εα = 1,5, и 8-й степени точности K =0,92.

Проверяем прочность зуба колеса

< [σF2] = 278МПа

Условие прочности выполнено.


6. Конструктивные размеры шестерни и колеса

Шестерню выполняем за одно целое с валом, ее размеры определены ранее:

d1 = 80 мм

da1 = 84 мм

df1 = d1 – 2,5m = 80-2.5*2 = 75 мм

b1 = 85 мм.

Колесо кованное:

d2 = 320 мм

da2 = 324 мм

df2 = d2 – 2,5m = 320-2.5*2 = 315 мм

b2 = 80 мм.

Диаметр ступицы dст = 1.6dK2 = 1.6 * 50 = 80 мм; длину ступицы принимаем равной ширине зубчатого колеса lст = 80 мм; толщина обода δо = (2,5 ¸ 4)mn = (2,5 ¸ 4)*2,0 = 5 ¸ 8 мм, принимаем 10 мм; толщина диска С = 0,3 b2 = 0,3*80 = 24 мм.


7. Конструктивные размеры корпуса редуктора

Толщина стенок корпуса и крышки: δ = 0,025 aw + 1 = 0,025*200 + 1 = 6 мм, принимаем δ = 8 мм; δ1 = 0,02 aw + 1= 5 мм, принимаем δ1 = 8 мм.

Толщина фланцев поясов корпуса и крышки:

Верхнего пояса корпуса и пояса крышки

b = 1.5δ = 1.5*8 =12мм; b1 = 1.5δ1 = 1,5*8 = 12мм;

нижнего пояса корпуса

р = 2,35 δ = 2,35*8 = 18,8мм, принимаем 20 мм.

Диаметр болтов: фундаментальных d1 = (0,03¸0,036) aw +12 = (6¸7,2)+12=18 ¸19,2 мм; принимаем болты с резьбой М20;

крепящих крышку к корпусу у подшипников d2 = (0,7¸0,75) d1 = (0,7¸ 0,75)*20 = 14 ¸ 15мм, принимаем болты с резьбой М16;

соединяющих крышку с корпусом d3 = (0,5¸0,6) d1 = (0,5¸ 0,6)*20 = 10¸ 12мм, принимаем болты с резьбой М12.


8. Первый этап компоновки редуктора

Первый этап служит для приближенного определения положения зубчатых колес и шкива относительно опор для последующего определения опорных реакций и подбора подшипников.

Компоновочный чертеж выполняется в одной проекции – разрез по осям валов при снятой верхней крышке редуктора.

Зазор между торцом шестерни или торцом ступицы и внутренней стенкой корпуса А1 = 1,2 δ, зазор от окружности вершин зубьев колеса до внутренней стенки корпуса А = δ, расстояние между наружным кольцом подшипника ведущего вала и внутренней стенкой корпуса А = δ , если диаметр окружности вершин зубьев шестерни окажется больше наружного диаметра подшипника, то расстояние А будем отмерять от шестерни.

Предварительно намечаю радиальные шарикоподшипники средней серии; габариты подшипников выбираю по диаметру вала в месте посадки подшипника dП1 = 45 мм и dП2 = 45 мм

Таблица №2.

Условное обозначение подшипника d D B Грузоподъемность, кН
Размеры, мм С С0
109 45 75 16 21,2 12,2
209 45 85 19 33,2 18,6

Для смазки подшипников будем применять консистентную пластичную смазку Литол - 24 по ГОСТ 21150-75, для предотвращения вытекания смазки внутрь корпуса и вымывания пластичного материала жидким маслом из зоны зацепления устанавливаем мазеудерживающие кольца, их ширина определяется размером у = 8 ¸ 12 мм.

Измерением определяю расстояние на ведущем валу l1 = 68 мм, и на ведомом l2 = 72 мм. Принимаю окончательно 72 мм.

Глубина гнезда для подшипника lГ ≈1.5B, для 109 подшипника 24 мм, для 209 – 28,5 мм, принимаю lГ = 30 мм.

Толщину фланца Δ крышки подшипника принимаю примерно равной диаметру d0 отверстия в крышке под крепящий болт, для принятых мною подшипников это 14 мм. Высоту головки болта принимаю 0,7dб = 0,7*12 = 8,4 мм, зазор между головкой болта и ступицей шестерни принимаю 10 мм. Измерением устанавливаю расстояние l3 = 78 мм.


9. Проверка долговечности подшипника

Рисунок 3. Расчётная схема ведущего вала