Таким образом, очевидно, что выбор того или иного режима нейтрали влияет на значительное количество технических решений, которые необходимо принять при дальнейшем проектировании ПС.
Согласно [7], разрешены к использованию в России способы заземления нейтрали для сетей 6–35 кВ: 1. Изолированная (незаземленная) нейтраль источников питания. 2. Заземленная нейтраль с помощью дугогасящего реактора (ДГР). 3. Заземленная нейтраль с помощью высокоомного или низкоомного резистора. Кроме того, возможен режим смешанного заземления нейтрали через параллельное включение ДГР и резистора.
Режим изолированной нейтрали, как показала практика, несет опасность возникновения при ОЗЗ перенапряжений на здоровых фазах до трехкратного увеличения относительно номинального напряжения. Это часто ведет к пробою изоляции кабелей и проводов этих фаз, а значит к возникновению сложных видов коротких замыканий. Именно поэтому, на практике при проектировании новых ПС этот режим нейтрали уже не используется. Для определения оптимального способа заземления нейтрали сети 10 кВ необходимо узнать: 1. Тип сети 10 кВ. В данном случае – сеть преимущественно выполнена кабельными линиями (КЛ) для питания города Кашира и прилегающих промышленных предприятий. Помимо кабельных линий, есть передача электрической энергии посредством воздушных линий (ВЛ), установленных на металлических опорах. Таким образом, зная особенности типа сети, построю таблицу 6.8.1 с учетом [3] для дальнейшего выбора режима нейтрали.
Подходящие режимы нейтрали для данного типа сети.
Тип электрической сети | UНОМ.С | Суммарный емкостной ток | Режим нейтрали |
Сети, имеющие ж/б или металлические опоры на ВЛЭП | 6–35 кВ | До (10 А) | Изолированная нейтраль; |
Заземление через высокоомный резистор | |||
Более (10 А) | Заземление через ДГР |
2. Значения суммарного емкостного тока секций РУ НН 10 кВ.
Формула приближенного расчета емкостного тока:
Емкостной ток для ВЛ-10 кВ:
, (6.8.1)Емкостной ток для КЛ-10 кВ:
, (6.8.2)Где UНОМ.С =10 кВ. LВЛ и LКЛ – длины кабельной и воздушной линий. К= 10 – поправочный коэффициент для кабелей с Б/м изоляции. К= 5 – поправочный коэффициент для кабелей из СПЭ-изоляции. По полученным данным от персонала ЭТЛ с согласия руководства филиала «Южные электрические сети» компании ОАО «МОЭСК» – известны полученные при опытах в ЭТЛ суммарные емкостные токи секций шин РУ 10 кВ на момент до реконструкции.
Суммарные емкостные токи секций РУ НН до реконструкции
Секция РУ НН 10 кВ | Емкостной ток секции | Режим нейтрали |
Секция №1 (тр-р №1) | 5,6 А | Изолированная |
Секция №2 (тр-р №2) | 14,2 А | Изолированная |
Секция №3 (тр-р №1) | 22,5 А | Изолированная |
Секция №4 (тр-р №2) | 9 А | Изолированная |
Сравнивая формулы (6.8.1) и (6.8.2), видно, что после реконструкции с полной заменой КЛ с Б/м изоляции (около 80% по суммарной длине от всех КЛ) на кабели из СПЭ-изоляции – при этом суммарный емкостной ток вырастет в 2 раза на каждой КЛ. Таким образом, можно ввести поправочный коэффициент К=1,8 и тогда получу данные емкостных токов секций после реконструкции (таблица 6.8.3 – обозначены жирным шрифтом).
Суммарные емкостные токи секций после реконструкции
Секция РУ НН 10 кВ | Емкостной ток секции | Емкостной ток секции |
Секция №1 (тр-р №1) | 5,6 А | 10,08 А |
Секция №2 (тр-р №2) | 14,2 А | 25,56 А |
Секция №3 (тр-р №1) | 22,5 А | 40,5 А |
Секция №4 (тр-р №2) | 9 А | 16,2 А |
Вывод: Значения емкостных токов всех 4 секций превысят 10 А после реконструкции и учитывая преобладание КЛ в сети 10 кВ – выбираю способ заземления нейтрали через ДГР.
Выбор ДГР
В качестве ДГР буду использовать комбинированный ДГР (то есть совмещенный с трансформатором подключения в одном баке) типа ASRC, производимый чешской компанией «EGE». Особенности данного типа ДГР: – Автоматическое определение емкостного тока сети и его плавную автоматическую компенсацию (от 10% до 100% от тока компенсации). – Комплектование цифровыми регуляторами REG-DPA с высокой чувствительности по напряжению 3U0 (в диапазоне 0,1–120 В). Регулятор обеспечивает высокое удобство эксплуатации (вычисляет емкостной ток сети; активную составляющую в токе замыкания; отображает на дисплее резонансную кривую сети и в виде засечки на ней текущую позицию реактора; обеспечивает автоматическое слежение за изменением емкости сети). – Комплектование шунтирующим низковольтным резистором, который включается во вторичную силовую обмотку реактора напряжением 500 В, что дает возможность организовать автоматический поиск присоединения с ОЗЗ. Номинальный активный ток, создаваемый шунтирующим резистором только в поврежденном фидере, составляет не менее 10% от максимального тока компенсации ДГР. Допустимое время протекания номинального тока в шунтирующем резисторе варьируется в пределах 6–90 с. – Оснащение устройствами обогрева шкафа управления и привода, что обеспечивает эксплуатацию на ОРУ ПС без дополнительной защиты при зимних температурах до -45º С. – Оснащение газовом реле Бухгольца для контроля уровня масла в ДГР и защиты от внутренних повреждений, а также электроконтактные термометры для контроля температуры масла при работе в режиме ОЗЗ.
ДГР типа ASRC оснащен тремя обмотками: 1. Главная обмотка, которая изготавливается в соответствии с UНОМ.СЕТИ, QДГР и длительностью работы сети в режиме ОЗЗ. 2. Измерительная обмотка (U2.ИЗМ=100 В; I2.ИЗМ =3А) используется для автоматического управления ДГР и измерения величины напряжения на нейтрали U0. 3. Специальная обмотка (UСПЕЦ= 500 В; QСПЕЦ =0,1· QДГР в течение 90 сек) применяется для кратковременного включения шунтирующего резистора, создающего активную составляющую в токе поврежденного присоединения, что обеспечивает его селективное определение при наличии соответствующей РЗ.
Расчет мощностей ДГР:
При выборе мощностей ДГР, которые будет устанавливаться единично на каждой секции, следует подчеркнуть, что расчетный емкостной ток будет равен емкостному току каждой из двух систем шин, то есть в случае, когда секционные выключатели замкнуты (случай выхода из строя одного из двух силовых трансформаторов).
Таким образом, суммируя значения емкостных токов секций (№1 и №2) и секций (№3 и №4) из таблицы 6.8.3 – получаю расчетные значения емкостных токов для выбора ДГР:
IС.Σ.1 = 10,08 + 40,5 =50,58 А; (6.8.3)
IС.Σ.2 = 25,56 + 16,2 =41,76 А; (6.8.4)
Таким образом, нахожу мощности устанавливаемых ДГР.
Секции (№1; №3): QДГР.1 ≥1,25·5,77·IС.Σ.1=1,25·5,77·50,58 = 364,81 кВа, (6.8.5) Секции (№2; №4): QДГР.2 ≥1,25·5,77·IС.Σ.2=1,25·5,77·41,76 = 301,19 кВа, (6.8.6)
Где 1,25 – коэффициент с учетом развития сети 10 кВ. 5,77 – фазное напряжение сети 10 кВ. Из [21] выбираю ДГР одной мощности QДГР = 480 кВа. Мощность трансформатора подключения SНОМ.ТДГР ≥ QДГР и равна 500 кВа. Тогда мощность специальной обмотки для подключения резистора равна: QСПЕЦ =0,1· QДГР = 50 кВа. Диапазон токов компенсации ДГР от 8А до 83 А, то есть максимальное значение тока компенсации IL.MAX= 83 А. Номинальный активный ток резистора IR ≥ 0,1· IL.MAXи принять равным стандартному значению 10 А.
Характеристики ДГР
Тип ДГР | ASRC |
Номинальная мощность | 480 кВа |
Номинальное напряжение сети | 10 кВ |
Настройка компенсации | плавная |
Размещение | ОРУ – 110 кВ |
Диапазон изменения тока компенсации | 8 – 83 А |
Номинальный активный ток резистора | 10 А |
Тип шунтирующего резистора | SR 500V / 120 A/ 60 s |
Цифровой регулятор реактора | REG-DPA |
Привод | Моторный MD1 |
Номинальная мощность трансформатора ТДГР | 500 кВа |
Схема соединения обмоток ТДГР | Y0/ Δ |
Производитель | «EGE» (Чехия) |
Марка кабеля, соединяющего ТДГР – АПвВнг-LS (3x16). Присоединение к секциям через КРУ серии КРУ-2–10 с выключателем типа ВВУ-СЭЩ-П-10–20/1000 У2.
5.9 Выбор ОПН
В качестве защиты оборудования ПС и ее изоляции от атмосферных и коммутационных перенапряжений нормативные документы разрешают использовать лишь ОПН (ограничители перенапряжения). В качестве рекомендаций [2], внешняя изоляция будет из полимерного материала. На ПС необходимо установить ОПН в количестве 32 штук: 1. На стороне 110 кВ – 8 штук. Из них 2 штуки – в нейтрали силовых трансформаторов параллельно с заземлителями. 6 штук – на тросы ввода трансформаторов. 2. На стороне 10 кВ – 24 штуки. 12 штук на каждую секцию в шкафах ТН и 12 штук на тросах выводов силовых трансформаторов. Таким образом, 12 штук ОПН будут во внутреннем исполнении, а остальные 20 штук – в открытом. Способ установки – «фаза-земля».
Для выбора типа ОПН на стороне 110 кВ необходимо найти наибольшее длительно допустимое напряжение на ОПН UНР.ОПН. Для данной ПС (не относиться к категории «особый случай» – смотри [15]) применима формула: