Смекни!
smekni.com

Расчет, разработка и проектирование теплообменного аппарата (стр. 1 из 3)

МИНИСТЕРСТВО ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ

Военная Академия войск РХБ защиты и инженерных войск

КАФЕДРА №11

Огнеметно-зажигательного вооружения, средств аэрозольного противодействия и специальной обработки

РАСЧЁТНО–ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

по курсовой работе на тему:

«Расчёт, разработка и проектирование теплообменного аппарата»

Выполнил: курсант 3 курса

инженерного факультета

Поддымин А.В.

Руководитель: доцент

К.Т.Н. Солодов Ю.В.

Кострома 2011 г.

Содержание

1. Введение

2. Тепловой расчёт теплообменника

2.1 Предварительный тепловой расчёт

2.2 Уточнённый тепловой расчёт

2.3 Механический расчёт

2.4 Конструктивный расчёт

2.5 Гидравлический расчёт

2.6 Расчёт теплоизоляции

Вывод

Список использованной литературы

Приложение

1. Введение

Теплообменные аппараты предназначены для проведения теплообменных процессов: нагревания, охлаждения, конденсации испарения. В зависимости от области применения теплообменники имеют соответствующие технологические названия:

При нагревании – подогреватели; при охлаждении – холодильники;

при конденсации – конденсаторы; при испарении – испарители.

В промышленности главным образом применяются рекуперативные, или поверхностные теплообменники, в которых тепло от одного носителя к другому передается через разделяющую их стенку.

Наибольшее распространение в химической промышленности получили кожухотрубчатые теплообменники. Из общего количества применяемой теплообменной аппаратуры на долю кожухотрубчатых теплообменников приходится более 80%. Государственным стандартом 9929-61 предусмотрен выпуск четырёх типов кожухотрубчатых теплообменников: ТН, ТЛ, ТП и ТУ.

Кожухотрубчатые теплообменники ТН имеют жесткий кожух и неподвижные приварные трубные решётки. Выпускаются промышленностью в вертикальном или горизонтальном исполнении одно-, двух-, четырёх-, шестиходовыми по трубному пространству с перегородками и без перегородок в межтрубном пространстве. Эти аппараты применяются при сравнительно малой разности температур между кожухом ипучком труб (до 30-50оС) втех случаях, когда нет необходимости в механической чистке межтрубного пространства. Рассчитаны на давление 0,6; 1,0; 2,5 и 4 Мн/м2 для рабочих сред с температурой от –30 до 200оС. Могут быть использованы при более высоких температурах (до 400оС) , однако в этом случае допустимое рабочее давление будет ниже. По сравнению с другими типами кожухотрубчатых теплообменников потребление теплообменников типа ТН за последние 10 лет составило более 70%.


2. Тепловой расчёт теплообменника

Тепловой расчёт теплообменника подразделяется на предварительный и уточнённый. Целью предварительного теплового расчёта является ориентировочное вычисление поверхности теплообмена и определение типа аппарата. При выполнении предварительного расчёта задаются величиной коэффициента теплоотдачи. Уточнённый тепловой расчёт проводится с целью проверки правильности принятого коэффициента теплопередачи и уточнение величины поверхности теплообмена.

2.1 Предварительный тепловой расчёт

Выбор схемы движения теплоносителей

Лучшие результаты показывают противоположные движения теплоносителей, так как обеспечивают большую разность температур, что в свою очередь приводит к наиболее благоприятным условиям теплопередачи при минимальной температуре стенок аппарата. Так как обе жидкости чистые, то в трубное пространство направляю теплоноситель с большей температурой.

Определение средней разности температур

Для определения средней разности температур процесса теплообмена (температурного напора) вычисляю разность температур на концах теплообменника.

tнач,гор=66°Ctкон,гор=24°C

tнач,хол=14°Ctкон,хол=23°C


Наибольший перепад температур:

tб=tнач,гор – tкон,хол=66–23=43;

Наименьший перепад температур:

tм=tкон,гор – tнач,хол=24–14=10.

>
. Тогда рассчитываем по формуле:

Определение средних температур теплоносителей

Так как разность температур горячего теплоносителя больше разности температур холодного теплоносителя, то средние температуры теплоносителей определяем по формуле:

;

tср,гор=tср,хол +

tср=22,6+18,5=41,1
.

Определение физических свойств теплоносителей при средних температурах

Определяю основные физические свойства теплоносителей с использованием математического метода интерполяции.

свойства единица измерения бензол при 51,1
вода при 22
плотность, ρ кг/м3 856,9 998
теплоёмкость, С Дж/кг·град 1,83·103 4,19·103
теплопроводность, λ Вт/м·град 0,14 0,599
динам. вязкость, μ Н·с/м2 0,4864·10-3 1·10-3

Определение тепловой нагрузки

Определяю тепловую нагрузку аппарата по теплоносителю, который имеет меньше тепловых потерь в окружающую среду. Для кожухотрубчатых теплообменников таким теплоносителем будет теплоноситель, направленный в трубное пространство, т. е. горячий.

Qгор=Gгор·Cгор·(tнач,гор–tкон,гор)=20·1,83·103(66–24)=1537200Вт.

Определение расхода холодного теплоносителя

Определяем расход холодного теплоносителя (потребное количество воды) по формуле:

.

Определение поверхности теплообмена

Задаёмся ориентеровачным значением коэффициента теплопередачи. Из приложения 9 [1] от жидкости жидкостям при возбуждённом движении теплоносителя К=300…1700 Вт/м2·град. Принимаю К=1000. Поверхность теплообмена определяю по формуле:

Выбор теплообменника

Выбираю теплообменник по величине поверхности теплообмена. Выписываем из каталога [1] характеристики всех теплообменников, имеющих поверхность теплообмена близкую к рассчитанной в п. 2.1.7.

№п/п число ходов, z поверхность,F[м2] диаметркожуха,Д [мм] диаметртруб,d[мм] длина труб,L [мм] число труб,n шаг,t [мм]
1 1 71 600 38 5000 121 48
2 2 69 800 38 3000 196 48
3 4 67 800 25 2000 446 32
4 6 69 800 38 4000 146 48

Определение скорости для теплообменников в трубном пространстве

Определяем скорости для каждого теплообменника по формуле:

–скорость в трубном пространстве (W1):

м/с;

м/с;

м/с;

м/с.

Отбираем теплообменники, у которых скорость теплоносителя является приемлемой. Рекомендуемая скорость движения теплоносителя из приложения 7 [1] для жидкости лежит в интервале [0,5;2,5] м/с. В данный интервал попадают скорости движения теплоносителей в трубном пространстве четырёх и шестиходового теплообменников.

Определение скорости для теплообменников в межтрубном пространстве

Определяю для выбранных аппаратов скорости движения теплоносителей в межтрубном пространстве с учётом наличия перегородок. Рекомендуемое количество перегородок в межтрубном пространстве для четырёх и шестиходового теплообменников с диаметром кожуха Д=800 и 800мм и длиной трубок L=2000 и 4000 мм согласно приложению 6 [1] составило 4 и 10 шт. Определяю для выбранных аппаратов скорости в межтрубном пространстве с учётом перегородок (принимая расстояние между ними: h=L/(n+1)). Для 4-х и 6-стиходового теплообменника h будет равно 0,6 и 0,44 по формуле:


Таким образом, по условиям приемлемых скоростей в трубном и межтрубном пространствах выбираю шестиходовой теплообменник с диаметром корпуса Д=800мм.