Смекни!
smekni.com

Влияние содержания 1,2-полибутадиена на свойства динамических термоэластопластов (стр. 4 из 10)

Таблица 1.1 Основные свойства ДТЭП на основе различных полимеров, и "Сантопрена" фирмы "Монсанто" (США)

Показатели СКЭПТ-ПП Сантопрен СКИ - ПА НК - ПП
Условная прочность при растяжении, МПа 7-20 7-27 15-30 6-20
Относительное удлинение, % 150-400 375-600 200-370 200-500
Напряжение при 100% удлинении, МПа 6-15 2-10 78-96 -
Твердость по Шору 75-95 64-97 49-100 60-70
Сопротивление раздиру, кН/м 30-45 26-112 2-3 -
Температурный интервалработоспособности,°С -50+150 -50+150 -40+150 -

По сравнению с обычными резинами на основе СКЭПТ и ХСПЭ, ДТЭП на основе СКЭПТ и ПП имеют более высокую термостойкость и стойкость к набуханию в агрессивных средах и приближаются по маслостойкости к резинам на основе полихлоропрена.

1.4 Физико-механические свойства ДТЭП

В зависимости от соотношения каучук-полиолефин можно получать ДТЭП с широким спектром свойств: от эластичных до ударопрочных.

Таблица 1.2 Основные физико-механические показатели ДТЭП на основе СКЭПТ-ПП

Показатели Содержание ПП, м. ч.
25 30 40 50 60 70 80
Прочность при разрыве, Мпа 5,4 7,3 9,1 9,5 16,8 16,6 14
Относительное удлинение при разрыве, % 170 270 320 250 430 390 120
Остаточное удлинение при разрыве, % 10 36 52 68 240 260 64
Сопротивление раздиру, кН/м 36 36 55 67 81 105 113
Температура хрупкости, 0С -61 -61 -60 -58 -58 -56 -56

В целом для широкой гаммы ДТЭП характерны следующие свойства:

1. Твердость ДТЭП позволяет производить изделия от гибких до полужестких и жестких, сохраняя при этом благоприятные механические свойства

2. Плотность ДТЭП значительно ниже плотности вулканизованной резины. Это дает возможность уменьшить вес детали на 30% без ущерба для эксплуатационных свойств.

3. Прочностные характеристики - прочность при разрыве, модуль при 100% удлинении, сопротивление раздиру - имеют достаточно высокие значения и зависят от типа материала.

4. Относительные и остаточные удлинения при растяжении и сжатии представляют существенный скачок для термопластичных материалов. Относительные удлинения при разрыве имеют хорошие значения для всех сортов материала, значения остаточной деформации при сжатии и 100% -ном удлинении для мягких сортов ДТЭП делает их пригодными для многих областей применения, в которых до сих пор использовались лишь вулканизованные резины.

5. Температура хрупкости для многих сортов ДТЭП находиться ниже - 50оС. Многие сорта обладают достаточно высокой степенью низкотемпературной эластичности [5].

Вулканизация эластомера приводит к изменению механических свойств рассматриваемых материалов. Так, в работе [19] показано, что предельные деформации смесей, содержащих сшитую каучуковую фазу, увеличиваются при ударном растяжении. Авторы работы [20] изучали влияние степени сшивки эластомера на деформацию композиций ПП и СКЭПТ. Оказалось, что механические характеристики смесей, содержащих вулканизованный СКЭПТ, выше, чем аналогичные показатели для ТПЭ на основе невулканизованного СКЭПТ.

По данным работы [21] динамическая вулканизация инициирует специфические деформационные процессы в ДТЭП. Характер последних определяется соотношением компонентов исследованных смесей. При малом содержании СКЭПТ или ПП (≤0.25 об. долей) механические характеристики в основном определяются матрицей - ПП в первом случае и СКЭПТ во втором. При содержании ПП в диапазоне 0.25-0.75 об. долей на начальной стадии деформируется в основном ПП - матрица, а на последующих стадиях - матрица (ПП) и дисперсная фаза (сшитый СКЭПТ) практически раздельно. При этом согласно полученным данным, частицы каучуковой фазы отслаиваются от матрицы ПП на стадии образования шейки, после достижения предела текучести ПП и СКЭПТ деформируются отдельно.

1.5 Физические свойства и микроструктура 1,2-полибутадиена

В полибутадиеновой цепи последовательное присоединение мономерных звеньев может происходить либо в положении 1,4 либо в 1,2. Наличие в 1,2-полибутадиене ассиметричного атома приводит к возможности проявления оптической изомерии элементарных звеньев, конфигурации которых соответствуют изотактической и синдиотактической формам [22].

Полибутадиен с высоким содержанием винильных звеньев (СКД-СР) получают растворной полимеризацией бутадиена-1,3 в присутствии каталитической системы н-бутиллитий (БЛ) - диметиловый эфир диэтиленгликоля (ДГ). В целях снижения текучести полимера, особенно при повышенных температурах, в систему вводят сшивающий агент - 0,05-0,12 % мас. дивенилбензола [23]. Переработка СКД-СР из-за ряда его специфических свойств (особенности микростроения, узкого ММР) затруднена [24].

Высокое содержание 1,2-звеньев придает каучуку исключительную стойкость к термоокислительной деструкции и высокое сопротивление тепловому старению. Вследствие отсутствия токсичных компонентов этот каучук можно применять в изделиях, контактирующих с пищей или кожей человека.1,2-ПБ имеет возможность разрушаться под действием микроорганизмов, что важно для снижения загрязнения окружающей среды. С увеличением содержания 1,2-звеньев в пределах всего диапазона линейно снижается температурный предел хрупкости и возрастает коэффициент термоокислительного старения резин.

В работе [25] исследовали структурные параметры каучуков по результатам их испытаний в интервале температур от - 180оС до 200оС динамическим механическим методом с применением обратного крутильного маятника. Температурный переход в области - 116÷-125оС (β-переход) соответствует температуре хрупкости каучуков. Наиболее интересным является α-переход, связанный с расстеклованием полибутадиена конфигурации 1,2 и соответствующий его температуре стеклования. Для СКД-СР Тс= - 20÷-30оС. Максимум механических потерь находиться в интервале температур - 96÷-100 оС (α 1-переход). По своему положению и значению этот переход соответствует Тс полибутадиена конфигурации 1,4. Анализ литературных данных показывает, что при полимеризации бутадиена в растворе с применением бутиллитиевых катализаторов наблюдается образование микроблоков цис - и транс - 1,4-конфигурации. Поэтому можно полагать, что обнаруженный α 1 переход обусловлен наличием в СКД-СР упорядоченных фрагментов 1,4-ПБ. Эти фрагменты, обладая большей подвижностью, чем ПБ-1,2 способствуют улучшению низкотемпературных свойств резин на основе СКД-СР. Их Тхр значительно ниже, чем у аналогичных по составу резин из СКБ, а наименьшую Тхр имеют резины с максимальным содержанием фрагментов 1,4-ПБ. В высокотемпературной области исследуемые каучуки также характеризуются наличием ряда максимумов механических потерь. У СКД-СР происходит резкое увеличение текучести при температурах выше 40оС. Обнаружены максимумы механических потерь в области 100÷123оС (α’-переход) и 158оС (α”-переход), которые, вероятно, можно отнести к плавлению кристаллитов из изо - и синдиотактических микроблоков ПБ-1,2 Наличие микроблоков ПБ-1,2 оказывает влияние на технологические свойства резиновых изделий на основе СКД-СР. Очевидно, образование микроблоков ПБ-1,2 приводит к уменьшению подвижности цепей эластомера в результате увеличения физического взаимодействия между ними и ухудшению технологических свойств резиновых смесей из СКД-СР.

В работе [35] исследовали зависимость физико-механических свойств вулканизатов на основе 1,2-полибутадиенов (СКД-СР, СКДЛБ) от микро - и макромолекулярной структуры каучуков. С увеличением содержания винильных звеньев скорость вулканизации повышается, что обусловлено тем, что скорость процесса вулканизации больше зависит от количества двойных связей основной цепи, которое уменьшается с увеличением доли боковых винильных звеньев. Степень вулканизации с повышением 1,2-звеньев уменьшается, о чем свидетельствует тенденция к снижению напряжения при удлинении 300% и твердости, увеличению относительного удлинения и остаточной деформации. С ростом количества 1,2-звеньев повышается сопротивление тепловому старению вулканизатов, что обусловлено применение СКД-СР и СКДЛБ (с содержанием 1,2-звеньев не менее 70%) в изделиях, работающих при высоких температурах в абразивной и асботехнической отраслях промышленности. Микроструктура полимера и связанная с ней молекулярная подвижность значительно влияют на температуру стеклования полимера, которая повышается с увеличением доли винильных звеньев. Таким образом, из исследованных молекулярных параметров наибольшее влияние на кинетику, степень вулканизации и соответственно на комплекс технических свойств изделий оказывает микроструктура полимера.

ПБ с повышенным содержанием 1,2-звеньев является материалом с контролируемым уровнем кристалличности. Полимеризация в растворе позволила получить 1,2-бутадиеновые каучуки более совершенной структуры (высокая чистота, линейность, отсутствие геля) с улучшенными прочностными, эластическими и усталостными свойствами [26].

В работе Л.В. Адамовой [27] "Термодинамическая устойчивость и механические свойства смесей изопренового и бутадиенового каучуков" исследовали два промышленных стереорегулярных каучука - цис - полиизопрен (СКИ-3) и 1,4-цис - полибутадиен (СКД) и нестереорегулярный полибутадиен СКД-СР, содержащий 78% 1,2 - звеньев, и смеси СКИ-3 с обоими полибутадиенами. Абсолютные значения энергии Гиббса смешения каучуков возрастают при переходе от стереорегулярного СКД к нерегулярному каучуку СКД-СР. Это связано, по мнению авторов, с уменьшением упорядоченности ассоциатов однородных макромолекул полибутадиена в двухфазной системе, что увеличивает вероятность образования смешенных ассоциатов, т.е. способствует образованию совместимости структур в смесях. В соответствии с этим все вулканизаты смесей, содержащие СКД-СР, характеризуются одной температурой стеклования, закономерно изменяющейся с составом композиции.