Динамическая вулканизация смеси с концентрацией каучука 30% изменяет характер растяжения - образцы деформируются однородно (рис.3.1.3). Увеличивается прочность в 1,2 раза, деформация же увеличивается в 4 раза. Это происходит по следующим причинам:
1) сшивание частичек каучука,
2) образование связей между ПЭ-матрицей и каучуковыми частицами, что способствует росту адгезионной прочности межфазной границы и, как следствие, увеличению вклада эластомерной составляющей материала в формирование его деформационных свойств,
3) подшивание матрицы ПЭ. Для смеси с концентрацией каучука 40 % динамическая вулканизация увеличивает деформационно-прочностные показатели: относительное удлинение увеличивается в 4,7 раза, прочность - в 1,3 раза. Хотя образцы деформируется однородно, наличие остаточного удлинения указывает на сохранение пластической деформации (табл.3.1.1).
Рис.3.1.3 Кривые растяжения образцов состава: 30% СКД-СР/ПЭНД: механическая смесь (1), ДТЭП (2), 40% СКД-СР/ПЭНД: механическая смесь (3), ДТЭП (4)
Чистый ПП разрушается на стадии формирования шейки. При введении 30% каучука деформация остается пластичной (рис.3.1.5). Сильно уменьшается прочность, но увеличивается относительное удлинение - в 2 раза. Образцы деформируются однородно (рис.3.1.4 а). С увеличением концентрации до 40 % характер деформирования не изменяется, увеличивается деформация, но уменьшается прочность.
а) 30%СКД-СР+ПП (мех. смесь) б) 30%СКД-СР+ПП (ДТЭП)
Рис.3.1.4 Фотографии растяжения образцов состава 30%СКД-СР-ПП
Динамическая вулканизация оказывает влияние на предельные характеристики материала, но не изменяет характер растяжения (рис.3.1.5.), образцы деформируются однородно (рис.3.1.4).
Рис.3.1.5 Кривые растяжения образцов состава: 30%СКД-СР/ПП: механическая смесь (1), ДТЭП (2), 40%СКД-СР/ПП: механическая смесь (3), ДТЭП (4)
Несмотря на однородный характер растяжения ДТЭП, содержащих 40% 1,2-ПБ, материалы пластичны, о чем свидетельствуют значения остаточного удлинения. Для материала на основе ПЭНД остаточное удлинение eост=154%, а для ДТЭП на основе ПП eост=46% (табл.3.1.1.).
Сопоставляя данные по влиянию природы полиолефина на свойства динамического термоэластопласта, содержащего 40% СКД-СР, видим, что образцы на основе ПП имеют большую прочность, но меньшие значения относительного и остаточного удлинений. Высокие значения удлинений динамических вулканизатов на основе ПЭНД могут быть связаны с частичной подвулканизацией ПЭНД, повышенным взаимодействием на границе каучук-термопласт и понижением подвижностей цепей полиэтиленовой матрицы, на что указывают данные ПТР (табл.3.1.2.). На ПП ВС не оказывает влияние.
Табл.3.1.2 Величины показателя текучести расплава ПЭ и ПП (с вулканизующей системой и без, при нагрузке 5 кг
Система | ПТР, г/мин |
ПЭНД | 4,1 |
ПЭНД-ВС | 2,5 |
ПП | 20,3 |
ПП-ВС | 20,4 |
Значения ПТР чистого ПП гораздо выше значений ПТР чистого ПЭ, что говорит о лучшей текучести ПП. При введении каучука ПТР уменьшается, но для систем на основе ПП также характерна более высокая текучесть в сравнении с системами на основе ПЭ. Динамическая вулканизация будет оказывать большее влияние на реологические свойства материалов на основе ПЭ, за счет его подшивания, в сравнении с материалами на основе ПП (табл.3.1.2).
При увеличении содержания каучука уменьшается содержание способного к вязкому течению термопласта, что приводит к снижению значений ПТР (табл.3.1.3).
Показатель текучести расплава уменьшается при динамической вулканизации, что связано с образованием связей на границе раздела фаз каучук-термопласт, затрудняющее течение. Способность к вязкому течению систем с 40 мас. % СКД-СР свидетельствует о сохранении непрерывности фазы термопласта.
Таблица 3.1.3 Величины показателя текучести расплава при температуре 190°С (для ПЭНД) и 220°С (для ПП) и различных нагрузках*
Термопласт | Соотношение полимеров СКД-СР/термопласт | Нагрузка, кг | |
6,3 | 15,6 | ||
ПЭНД-276-73 | 0/100 | 4,9±0,03 | 23,3±0,03 |
30/70 | |||
40/60 | |||
100/0 | Не течет | 0,7±0,02 | |
ПП "Каплен" | 0/100 | 25,0±0,02 | 108,5±0,04 |
30/70 | |||
40/60 | |||
100/0 | Не течет | 0.7±0,03 |
* в числителе - ПТР для материалов без вулканизующих систем
в знаменателе - ПТР для материалов с вулканизующими системами
Для определения влияния динамической вулканизации на микроструктуру матричного полимера был проведен теплофизический анализ механических смесей и ДТЭП состава: 30%СКД-СР/ПЭНД и 30%СКД-СР/ПП. По данным ДСК (табл.3.1.4) можно сделать вывод, что динамическая вулканизация не оказывает влияния на структуру матричного полимера, т.к. не изменяются степень кристалличности и температура плавления.
Таблица 3.1.4 Теплофизические свойства систем на основе термопласт /СКД - СР, с концентрацией каучука 30%
Термопласт | ΔН, Дж/г | интервал температур | Тпл, оС | степень кристалличности,% |
ПЭНД | ||||
ПП |
* в числителе - для материалов без вулканизующих систем
в знаменателе - для материалов с вулканизующими системами
Влияние природы каучука на свойства динамических термоэластопластов рассматривали на смесях: СКД-СР/ПЭНД и СКЭПТ-712/ПЭНД. Вулканизаты на основе каучуков СКД-СР и СКЭПТ-712 имеют различные предельные показатели (рис.3.2.1.).
Рис.3.2.1 Кривые растяжения вулканизованных каучуков: СКЭПТ 712 (1), СКД-СР (2)
На рис.3.2.2 представлены кривые растяжения ДТЭП на основе СКЭПТ и СКД-СР с концентрацией каучука 30 и 40%. Для динамических вулканизатов на основе СКЭПТ с концентрацией каучука 30% характерно растяжение с образованием зуба текучести. С увеличением концентрации каучука до 40 мас. % зуб текучести вырождается, но образец деформируется неоднородно. Для динамических вулканизатов на основе каучука СКД-СР характерно однородное деформирование. Можно сделать вывод, что на характер деформирования влияет природа каучука.
Рис.3.2.2 Кривые растяжения ДТЭП состава: 30%СКЭПТ/ПЭНД (1), 40%СКЭПТ/ПЭНД (2), 30%СКД-СР/ПЭНД (3), 40%СКД-СР/ПЭНД (4).
При концентрации каучука 30% ДТЭП с каучуком СКД-СР разрушается при напряжении 14,7 МПа, прочность при разрыве ДТЭП со СКЭПТ гораздо выше - 40,3 МПа (табл.3.2.1). Можно предположить, что более высокие прочностные показания динамических вулканизатов на основе каучука СКЭПТ-712 связаны с большей прочностью каучука СКЭПТ-712 (рис.3.2.1). Деформационно-прочностные показатели ДТЭП на основе СКЭПТ-712/ПЭНД выше, чем у динамических вулканизатов на основе СКД-СР/ПЭНД. При совмещении полимеров с близкими параметрами растворимости можно ожидать в системе образование развитого межфазного слоя. Чем выше межфазные взаимодействия каучука с пластиком, тем лучшими физико-механическими свойствами будут обладать композиции на их основе [29].
Таблица 3.2.1 Механические свойства механических смесей и ДТЭП на основе ПЭНД 276-73 *
Каучук | Концентрация каучука,% | Прочность при разрыве, σ, МПа | Относительное удлинение εотн,% | Остаточное удлинение εост,% |
СКД-СР | 0 | 39 | 620 | 600 |
30 | ||||
40 | ||||
100 | 2,2 | 480 | - | |
СКЭПТ - 712 | 0 | 39 | 620 | 600 |
30 | ||||
40 | ||||
100 | 4,3 | 332 | - |
* в числителе - для материалов без вулканизующих систем