Смекни!
smekni.com

Влияние содержания 1,2-полибутадиена на свойства динамических термоэластопластов (стр. 9 из 10)

в знаменателе - для материалов с вулканизующими системами

3.3 Старение ДТЭП на основе ПЭНД/СКЭПТ-712, ПЭНД/СКД-СР и ПП/СКД-СР, содержащих 40 % каучука

Старение провели в условиях повышенной температуры (70оС) в течение 24 ч. После искусственного старения, характер растяжения ДТЭП не изменяется: как исходный, так и состаренный материалы деформируются одинаково: с образованием шейки (рис.3.3.1) - ДТЭП на основе СКЭПТ/ПЭНД, однородно СКД-СР/ПЭНД (рис.3.3.2) и СКД-СР/ПП (рис.3.3.3). Однако изменяются деформационно-прочностные характеристики.

Рис.3.3.1 Кривые растяжения исходного (1) и состаренного (2) ДТЭП состава 40 мас. % СКЭПТ марки 712 - 60 мас. % ПЭНД марки 276-73.

Рис.3.3.2 Кривые растяжения исходного (1) и состаренного (2) ДТЭП состава 40 мас. % СКД-СР - 60 мас. % ПЭНД марки 276-73

Рис.3.3.3 Кривые растяжения исходного (1) и состаренного (2) ДТЭП состава 40 мас. % СКД-СР - 60 мас. % ПП марки Каплен

В табл.3.3.1 приведены механические свойства динамических вулканизатов, подвергшихся искусственному старению.

Для ДТЭП, подвергшихся старению, на основе ПЭНД/СКД-СР и ПП/СКД-СР, не изменяются характер деформирования и механические характеристики. Что говорит о стабильности ДТЭП на основе каучука СКД-СР.

Для динамических вулканизатов на основе каучука СКЭПТ характерно незначительное увеличение относительного удлинения и прочности во время термоокислительного старения, что связано с дополнительным структурированием СКЭПТ.

Таблица 3.3.1 Механические свойства динамических вулканизатов с содержанием каучука 40% на основе: ПЭНД /СКЭПТ-712, ПЭНД /СКД-СР, и ПП/СКД-СР, подвергшихся искусственному старению *

ДТЭП Прочность при разрыве σ, МПа Относительное удлинение εс,% Остаточное удлинение εост,%
СКД-СР/ПП
СКД-СР/ПЭНД
СКЭПТ/ПЭНД

*в числителе - свойства исходного ДТЭП,

в знаменателе - свойства состаренного ДТЭП

Таким образом, ДТЭП на основе каучука СКД-СР стойки к термоокислительному старению; в сравнении с ДТЭП на основе СКЭПТ-712, более стабильны, под действием повышенной температуры свойства не изменяются.

Таким образом, ДТЭП на основе 1,2-ПБ имеют высокие характеристики, сочетающие эластичные и эксплуатационные свойства вулканизованных резин и конструкционные свойства термопластов при переработке. Можно предложить их в производстве формовых и неформовых изделий для предприятий автомобилестроения и стройиндустрии.

В соответствии с ГОСТ 30547-97 на рулонные кровельные и гидроизоляционные материалы можно предложить использование ДТЭП на основе 60%ПЭНД/40%СКД-СР в качестве рулонных кровельных материалов, т.к. они соответствуют поставленным требованиям (табл.3.3.2).

Показатели По ГОСТ 30547-97 ДТЭП на основе ПЭНД/40%СКД-СР
Условная прочность при разрыве, МПа Не менее 8 13,8
Относительное удлинение, % Не менее 200 320
Термоусадка после 6ч. Термостатирования %, 70оС Не более 2 0,5

Заключение

В представленной работе были исследованы динамические термоэластопласты на основе ПЭВП и СКД-СР, и ПП и СКД-СР. В качестве вулканизующей системы использовали серную сшивающую систему. Установлено, что с увеличением содержания каучука в материалах реализуется переход от растяжения с образованием и ростом шейки к макрооднородному деформированию. Прочность материалов с увеличением концентрации каучука уменьшается, а относительное удлинение - увеличивается. Показано, что природа матрицы влияет на деформационное поведение механических смесей. Вне зависимости от характера растяжения матрицы, динамические вулканизаты на основе ПЭНД или ПП с концентрацией каучука СКД-СР 40% деформируются однородно и имеют высокие деформационно-прочностные свойства.

Изучив влияние каучука на свойства ДТЭП, пришли к выводу, что природа каучука также оказывает влияние на механические свойства ДТЭП. Концентрация каучука, при которой происходит переход от неоднородного деформирования к однородному также зависит от природы каучука.

ДТЭП на основе ПП имеют прочность несколько выше, чем прочность ДТЭП на основе ПЭ, и меньшие значения остаточного и относительного удлинений. Также динамические вулканизаты на основе ПП сохраняют достаточную текучесть для дальнейшей переработки.

ДТЭП на основе каучука СКД-СР стойки к термоокислительной деструкции.

Выводы

1. Проведен анализ свойств механических смесей и динамических вулканизатов на основе 1,2-полибутадиенового каучука СКД-СР и ПЭНД или ПП.

2. Изучено влияние матрицы и каучука на свойства ДТЭП. Природа каучука и термопласта оказывает влияние на характер деформирования и механические свойства.

3. Показано, что увеличение содержания 1,2-полибутадиена приводит к увеличению деформируемости, но снижению прочности ДТЭП на его основе. Содержание каучука при переходе от неоднородного к однородному деформированию зависит от свойств матричного полимера. Показано, что при содержании каучука СКД-СР 40% ДТЭП на основе как ПЭ, так и ПП деформируются однородно.

4. Установлено, что динамическая вулканизация не влияет на кристаллическую структуру матрицы: сохраняются степень кристалличности и температура плавления.

5. ДТЭП на основе 1,2-полибутадиена/ПП сохраняют текучесть, что говорит о возможности вторичной переработки.

6. Установлено, что концентрация каучука, при которой происходит переход от неоднородного деформирования к однородному, зависит от природы каучука и для ДТЭП на основе СКД-СР этот переход происходит при более низких концентрациях каучука в сравнении с ДТЭП на основе СКЭПТ.

7. Показано, что при искусственном старении ДТЭП на основе СКД-СР более стабильны и сохраняют свои свойства в сравнении с ДТЭП на основе СКЭПТ.

Список используемой литературы

1. http://kvart. knet.ru/rus/dtep. htm

2. Setua D. K., Soman C., Bhowmick A. K. // Polymer Engineering and Science. 2002. Vol.42. №1.

3. Пат. США № 3037954 (12.03.1962г.). / Gessler A.М., Hasslet W. H.

4. Савельева Н.В., Ланина Т.Ф., Пыжова Е.Д., Гринько Д.В. // Каучук и резина. 2006. №2.

5. Вольфсон С.И. Динамически вулканизованные термоэластопласты. М.: Наука, 2004

6. Коран А.И., Патея Р.П. // Сб. препринтов Межд. конф. по каучуку и резине. Киев, 1978. Т.3.

7. Канаузова А.А., Юмашев М.А., Донцов А.А. Получение термопластичных резин методом динамической вулканизации и их свойства. Тем. обзор. М.: ЦНИИТЭНефтехим. 1985

8. Баранов А.О., Котова А.В., Зеленецкий А.Н., Прут Э.В. Влияние характера химической реакции на структуру и свойства смесей при реакционном смешении полимеров. // Успехи химии. 1997. Т.66. С.972-984.

9. Ермаков С.Н., Кербер М.Л., Кравченко Т.П. Химическая модификация и смешение полимеров при реакционной экструзии. // Пласт. массы. 2007. № 10.

10. Прут Э.В., Зеленецкий А.Н., Чепель Л.М., Ерина Н.А., Дубникова И.Л., Новиков Д.Д. Термопластичная эластомерная композиция и способ ее получения // Патент №206927 Б.И. 1996. №32.

11. Coran A. Y., Patel R.rubber-thermoplastic composition. Part IV. Thermoplastic vulcanizates from various rubber-plastic comdination. // Rubber Chem. Technol. 1981. Vol.54.

12. Ерина Н.А., Карпова С.Г., Леднева О.А., Компаниец Л.В., Попов А.А., Прут Э.В. Влияние условий смешения на структуру и свойства смеси полипропилен - тройной этилен - пропиленовый сополимер. // Высокомолек. соед.Б. 1995. Т.37. №8.