Смекни!
smekni.com

Расчет червячно-цилиндрического редуктора и электродвигателя (стр. 3 из 5)

Консольное усилие на выходном валу от втулочно-пальцевой муфты

FM = сΔr · Δr = 16238 · 0,4 = 6495 Н

где сΔr = 16238 Н/мм [3, с. 238, таблица 10.27] – радиальная жесткость;

Δr = 0,4 мм [3, с. 400, таблица К21] –радиальное смещение валов.

Рассматриваем самый неблагоприятный вариант, когда консольная сила направлена противоположно равнодействующей сил зацепления. При этом

4.3 Расчет и выбор опор валов, определение ресурса подшипников

Для приводов внутрицеховых транспортирующих машин со спокойной нагрузкой ГОСТ 16162-85 предусматривает долговечность подшипников не менее [Lh] = 5000 часов [3, с. 133, таблица 9.4].

Вал I (рисунок 3)

Исходные данные для расчета:

- суммарные радиальные реакции опор RА = 926 Н, RБ = 535 Н;

- частота вращения вала n = 1460 мин-1 (раздел 1).

- посадочный диаметр подшипников dI = 35 мм.

На вал действует осевая нагрузка на червяке, поэтому предварительно намечаем радиально-упорные шарикоподшипники с углом α = 26°. По посадочному диаметру подбираем подшипник 46307 ГОСТ 831-75 [3, с. 413, таблица К28]. Характеристики подшипника в таблице 2

Таблица 2 – Характеристики подшипника

Обозначение Внутренний диаметр, d, мм Наружный диаметр, D, мм Динамическая грузоподъемность С, Н Статическая грузоподъемность С0, Н
46307 35 80 42600 24700

Осевые составляющие радиальных реакций радиально-упорных шарикоподшипников

SА = e · RА = 0,68 · 926 = 630 Н;

SБ = e · RБ = 0,68 · 535 = 364 Н;

SА – SБ = 630 – 364 = 266 Н

где е = 0,68 [2, с. 213, таблица 9.18] – коэффициент минимальной осевой нагрузки.

В нашем случае

SБ < SА ; Fa = 3990 Н > SА – SБ = 266 Н

тогда

АБ = SБ = 364 Н ; АА = SБ + Fa = 364 + 3990 = 4354 Н

Рассмотрим подшипник «Б».

Отношение

= е – осевую нагрузку не учитываем.

Определяем эквивалентную нагрузку


РВ = V ×RБ× Кб× Кт = 1 × 535 × 1 × 1 × 1= 535 Н

где V = 1 [2, с. 212] – коэффициент (вращается внутреннее кольцо с валом);

Кб = 1 [2, с. 214, таблица 9.19] – коэффициент (спокойная нагрузка без толчков);

Кт = 1 [2, с. 214, таблица 9.20] – коэффициент (температура не более 125°С).

Рассмотрим подшипник «А».

Отношение

> е = 0,68 – осевую нагрузку учитываем

При α = 26° коэффициенты нагружения X = 0,41, Y = 0,87 [2, с. 213, таблица 9.18].

Определяем эквивалентную нагрузку

РА = (X × V ×RА + Y × АА) × Кб× Кт = (0,41 × 1 × 926 + 0,87 × 4354) × 1 × 1= 4168 Н

Расчет проводим по более нагруженному подшипнику «А».

Определяем расчетную долговечность, млн. об.

млн. об.

Определяем расчетную долговечность, ч.

ч.

Расчет показывает, что расчетный ресурс Lh = 12180 часов больше нормы долговечности подшипников [Lh] = 6000 часов [3, с. 133, таблица 9.4].

Вал II (рисунок 4 )

Исходные данные для расчета:

- суммарные радиальные реакции опор RВ = 3225 Н, RГ = 6089 Н;

- частота вращения вала n = 73 мин-1 (раздел 1).

- посадочный диаметр вала dII = 55 мм.

На вал действует осевая нагрузка на червячном колесе, поэтому предварительно намечаем конические однорядные роликоподшипники. По посадочному диаметру подбираем подшипник 2007111А ГОСТ 27365-87 [4, с. 242, таблица 138]. Характеристики подшипника в таблице 3

Таблица 3 – Характеристики подшипника

Обозначение Внутренний диаметр, d, мм Наружный диаметр, D, мм Динамическая грузоподъемность С, Н Статическая грузоподъемность С0, Н
2007111А 55 90 76500 64000

Осевые составляющие радиальных реакций радиально-упорных роликоподшипников

SВ = 0,83e · RВ = 0,83 · 0,33 · 3225 = 883 Н;

SГ = 0,83e · RГ = 0,83 · 0,33 · 6089 = 1668 Н;

SГ – SВ = 1668 – 883 = 785 Н

где е = 0,33 [4, с. 242, таблица 138] – коэффициент минимальной осевой нагрузки.

В нашем случае


SВ < SГ ; Fa = 1200 Н > SГ – SВ = 785 Н

тогда

АВ = SВ = 883 Н ; АГ = SВ + Fa = 883 + 1200 = 2083 Н

Рассмотрим подшипник «В».

Отношение

< е = 0,33 – осевую нагрузку не учитываем.

Определяем эквивалентную нагрузку

РВ = V ×RВ× Кб× Кт = 1 × 3225 × 1 × 1 × 1 = 3225 Н

Рассмотрим подшипник «Г».

Отношение

> е = 0,33 – осевую нагрузку учитываем

Определяем эквивалентную нагрузку

РГ = (X × V ×RГ + Y × АГ) × Кб× Кт = (0,4 × 1 × 6089 + 1,8 × 2083) × 1 × 1= 6185 Н

где X = 0,4 [2, с. 212, таблица 9.18] – коэффициент радиального нагружения;

Y= 1,8 [4, с. 242, таблица 138] – коэффициент осевого нагружения;

Расчет проводим по более нагруженному подшипнику «Г».

Определяем расчетную долговечность, млн. об.

млн. об.

Определяем расчетную долговечность, ч.

ч.

Расчет показывает, что расчетный ресурс Lh = 990800 часов больше нормы долговечности подшипников [Lh] = 6000 часов [3, с. 133, таблица 9.4].

Вал III (рисунок 5)

Исходные данные для расчета:

- суммарные радиальные реакции опор RД = 2658 Н, RЕ = 6779 Н;

- частота вращения вала n = 24 мин-1 (раздел 1).

- посадочный диаметр вала dIII = 85 мм.

Так как тихоходная ступень редуктора представляет собой прямозубую цилиндрическую передачу, то на вал не действуют осевые нагрузки, поэтому предварительно намечаем радиальные шарикоподшипники. По посадочному диаметру подбираем подшипник 217 ГОСТ 8338-75 [3, с. 410, таблица К27]. Характеристики подшипника в таблице 4

Таблица 4 – Характеристики подшипника

Обозначение Внутренний диаметр, d, мм Наружный диаметр, D, мм Динамическая грузоподъемность С, Н Статическая грузоподъемность С0, Н
217 85 150 83200 53000

Расчет проводим по более нагруженному подшипнику «Е».

Определяем эквивалентную нагрузку

РЕ = V ×RЕ× Кб× Кт = 1 × 6779 × 1 × 1 × 1= 6779 Н


Определяем расчетную долговечность, млн. об.

млн. об.

Определяем расчетную долговечность, ч.

ч.

Расчет показывает, что расчетный ресурс Lh = 1284722 часов больше нормы долговечности подшипников [Lh] = 6000 часов [3, с. 133, таблица 9.4].

4.4 Проверка шпоночных соединений

Проверяем на прочность шпоночное соединение выходного конца вала Iс полумуфтой по допускаемым напряжениям смятия [sСМ] = 100 МПа [2, с. 170]

< [sСМ] = 100 МПа

где d = 32 мм – диаметр вала в месте посадки полумуфты,

lP = l – b = 56 – 10 = 46 мм – длина рабочей грани шпонки со скругленными с двух сторон концами,

l = 56 мм – общая длина шпонки,

h = 8 мм – высота шпонки,

t1 = 5 мм – глубина шпоночного паза на валу;

b = 10 мм – ширина шпонки.

Проверяем на прочность соединение вала II с шестерней и червячным колесом

< [sСМ] = 100 МПа

где d = 60 мм – диаметр вала в месте посадки колеса,

lP = l – b = 100 – 18 = 82 мм – длина рабочей грани шпонки,

l = 100 мм – общая длина шпонки,

h = 11 мм – высота шпонки,

t1 = 7 мм – глубина шпоночного паза на валу;

b = 18 мм – ширина шпонки.

Проверяем на прочность соединение вала III с зубчатым колесом

< [sСМ] = 100 МПа

где d = 90 мм – диаметр вала в месте посадки колеса,

lP = l – b = 160 – 25 = 135 мм – длина рабочей грани шпонки,

l = 160 мм – общая длина шпонки,

h = 14 мм – высота шпонки,

t1 = 9 мм – глубина шпоночного паза на валу;

b = 25 мм – ширина шпонки.

4.5 Расчет валов на усталостную прочность

Определим коэффициенты запаса прочности для предположительно опасных сечений валов, принимая, что нормальные напряжения изменяются по симметричному циклу, а касательные – по отнулевому (пульсирующему).

Вал I– сечение под опорой «А» (рисунок 3)

Исходные данные для расчета:

- изгибающий момент под опорой «А» М1 = 139826 Н·мм;

- диаметр вала под опорой «А» dI = 35 мм;

Назначаем материал вала – сталь 45 нормализованная (за исключением резьбового участка – закаленного токами высокой частоты) [2, с. 34, таблица 3.3], имеющую механические свойства:

- временное сопротивление на разрыв sв = 570 МПа

- предел выносливости по нормальным напряжениям

s-1 = 0,43 · sв = 0,43 · 570 = 245 МПа

- предел выносливости по касательным напряжениям

t-1 = 0,58 · s-1 = 0,58 · 245 = 142 МПа

Определяем коэффициент запаса усталостной прочности в сечении под опорой «А» (концентратор напряжения – посадка с натягом)

где Ss – коэффициент запаса усталостной прочности при изгибе