Смекни!
smekni.com

Система управления узлом дегидрирования этилбензола (стр. 3 из 22)

Перечень наблюдаемых воздействий
Управляющиевоздействия (х) Возмущающие воздействия (z) Регулируемые параметры (y)
1.Регулирование давления топливного газа в П-201/1,22.Регулирование давления абгаза в П-201/1,23.Регулирование давления водяного пара на вводе в корпус 3034.Регулирование расхода водяного пара на вводе в корпус 303.5.Регулирование расхода напорного конденсата а утилизаторы П-201/2 1. Изменение давления и расхода водяного пара на вводе в корпус 3032. Изменение расхода напорного конденсата на вводе в корпус 3033. Изменение расхода абгаза с узла компремирования 4. Изменение давления и расхода топливного газа на вводе в корпус 3035.Изменение расхода ЭБШ на установку дегидрирования 1.Расход ЭБШ в Т-229 2.Температура водяного пара на выходе из утилизаторов3.Расход водяного пара на вводе в корпус 3034.Давление топливного газа на вводе корпус 3035.Расход напорногоконденсата в утилизаторы П-201/26.Давление абгаза в П-201/1,2
6.Регулирование уровня жидкости в Пн-205/1,27.Регулирование расхода конденсата, подаваемого в Пн-2098.Регулирование давления водяного пара, подаваемого в межтрубное пространство испарителя Т-2049.Регулирование расхода водяного пара, подаваемого в трубное пространство испарителя Т-20410.Регулирование уровня в емкости Е-22311.Регулирование расхода ЭБШ в Т-229 6. Параметрические возмущения (закоксованность катализатора) 7.Давление водяного пара на вводе в корпус 3038.Уровень жидкости в Пн-205/1,29.Расход конденсата в Пн-20910.Давление водяного пара в межтрубном пространстве испарителя Т-20411.Расход водяного пара в трубном пространстве испарителя Т-20412.Уровень в емкости Е-223

Из таблицы 1 видны переменные, являющиеся выходными координатами процесса – y; переменные, изменением которых система управления может воздействовать на объект с целью управления – х; переменные, отражающие влияние на регулируемый объект различных возмущений – z.

На основе этих переменных можно представить структурную схему управления, где указаны все возможные воздействия на объект управления.


Рис. 1.1. Структурная схема объекта управления

1.2 Основные характеристики и особенности технологического объекта с точки зрения задач управления

Задачей автоматизации химических реакторов является обеспечение степени превращения исходного вещества (этилбензол) в конечный продукт (стирол), не менее 30% для реактора поз. Р-202/1 и не менее 50% для реактора поз. Р-202/2, при заданной максимально возможной интенсивности при ограничении на энергозатраты и на нагрузку, с соблюдением условий безопасности и безаварийности работы [4].

В качестве объекта управления принимаем отделение дегидрирования этилбензола, в которое входят блоки: печное отделение, реакторный блок и узел конденсации, состоящие из следующих основных аппаратов: печь П-201/1,2, реактор Р-202/1,2, перегреватель Т-203, котёл-утилизатор Пн-205/1,2, пенный аппарат Пн-209, емкость Е-223, испаритель Т-204, теплообменник Т-229.

Химические реактора является основным аппаратом в технологической схеме процесса получения стирола путем каталитического дегидрирования этилбензола. С позиции задачи управления реактора являются сложными объектами с нелинейными статическими характеристиками.

Реакция дегидрирования этилбензола, протекающая при температуре 600÷6300С, эндотермическая и идет с поглощением тепла. При эндотермической реакции даже небольшое изменение температуры в реакторах может привести к значительным изменениям степени конверсии. Поэтому требуется построение автоматизированной системы регулирования температурного режима, быстродействующей и высокоточной [2].

Данное производство по характеру сырья и получения продуктов, а также в связи с наличием токсичных и взрывоопасных смесей, относится к категории пожаро - и взрывоопасных производств, что обуславливает необходимость противоаварийной защиты (ПАЗ).

Сложность управления технологическим объектом заключается в том, что он постоянно подвергается возмущающим воздействиям, которые нарушают нормальный ход процесса в объекте. Различают внешние и внутренние возмущающие воздействия.

Внешние возмущающие воздействия проникают в объекты управления извне: вследствие изменения входных параметров, некоторых выходных, а также параметров окружающей среды [1]. В даном случае объект подвергается постоянным, сильным возмущениям при изменении температуры, расхода перегреваемого пара, расхода и теплотворной способности топлива, расхода и температуры ЭБШ.

Внутренние возмущающие воздействия возникают в самом объекте управления, при изменении характеристик технологического оборудования. К ним относится, например, закоксованность катализатора.

При управлении процессом особое внимание следует обратить на внешние возмущающие воздействия, так как они поступают в объект чаще, чем внутренние, нередко имеют ступенчатый характер, большую амплитуду изменения и в ряде случаев могут быть устранены до поступления в объект.

Показателем эффективности процесса дегидрирования является состав целевого продукта. Целевым продуктом является контактный газ, а целевое управление - снижение потерь сырья, вспомогательных продуктов (топливного газа, абгаза, катализатора). Учитывая большую энергоемкость процесса дегидрирования, минимизация потерь принимает большое значение в ТЭП предприятия.

1.3 Обобщенный критерий эффективности управления процессом

Общая задача управления технологическим процессом формируется обычно как задача максимизации (минимизации) некоторого критерия (себестоимости, энергозатрат) при выполнении ограничений на технологические параметры, накладываемые регламентом. Решение такой задачи для всего процесса в целом очень трудоемко, а иногда практически невозможно в виду большого числа факторов, влияющих на ход процесса. Поэтому весь процесс разбивают на отдельные участки, которые характеризуются сравнительно небольшим числом переменных. Обычно эти участки совпадают с законченными технологическими стадиями, для которых могут быть сформулированы свои подзадачи управления, подчиненные общей задаче управления процессом в целом.

Химические реактора являются основными аппаратами в технологической схеме процесса получения стирола путем дегидрирования этилбензола [4]. Спецификой автоматизации тепловых процессов является то, что они очень энергоемки, поэтому система автоматизации должна способствовать снижению энергозатрат на обеспечение заданной степени превращения исходного вещества в конечный продукт при заданной максимально возможной интенсивности реакции.

Для формулировки задачи необходимо ввести обозначения искомых переменных и исходных данных, записать в этих обозначениях критерий оптимальности, который в результате решения должен принять минимальное или максимальное значение, и выписать набор условий, определяющих множество допустимых решений. Такими условиями являются пределы, в которых может выбираться каждая из них.

На детализированной структурной схеме объекта управления (рис. 1.2.) показаны возможные воздействия на объект управления:


Рис.1.2. Детализированная структурная схема объекта управления

u1- управляющие воздействия на реактор Р-202/1:

Gвп- расход водяного пара в печь П-201;

Рвп- давление водяного пара в печь П-201;

Gэбш- изменение расхода этилбензольной шихты в реактор Р-202/1;

Ртг- давление топливного газа в печь П-201;

z1- возмущения, действующие на реактор Р-202/1:

tэбш- изменение температуры этилбензольной шихты в реактор Р-202/1;

zк- закоксованность катализатора;

z- старение установки;

у1- переменные, характеризующие состояние контактного газа после реактора Р-202/1:

Qкг1- состав контактного газа после реактора Р-202/1;

Ак- активность катализатора;

Т1- температура в реакторе Р-202/1;

Р1- давление в реакторе Р-202/1;

u2- управляющие воздействия на реактор Р-202/2:

Gвп- расход водяного пара в печь П-201;

Рвп- давление водяного пара в печь П-201;

Ртг- давление топливного газа в печь П-201;

z2- возмущения, действующие на реактор Р-202/2:

zк- закоксованность катализатора;

z- старение установки;

Рвп- изменение давления водяного пара в печь П-201;

у1- переменные, характеризующие состояние контактного газа после реактора Р-202/2:

Qкг2- состав контактного газа после реактора Р-202/2;

Ак- активность катализатора;

Т2- температура в реакторе Р-202/2;

Р2- давление в реакторе Р-202/2.

Критерий управления:

При действии на объект вектора возмущений Z (см.рис.1.2.) нужно найти вектор управляющих воздействий U*=(U1*,…, Ur*) минимизирующий (или максимизирующий) значение целевой функции Q (Z,U):

Q*(Z,U)=minQ(Z,U),

при соблюдении ограничений на входные переменные процесса:

R1(F,U)≥0

. . .

. . .

. . .

Rk(F,U) ≥0.

На переменные u1,u2,y1,y2,z1,z2 наложены следующие ограничения:

560 0С < Т1<600 0С
600 0С< Т2 < 630 0С
Р1 ≤ 100 кПа
Р2 ≤ 100 кПа
50 т/ч <Gвп < 95 т/ч
200 кПа <Ртг < 320 кПа
Рвп ≤ 600 кПа

Целевая функция численно выражает нашу заинтересованность в том или ином режиме объекта.

В качестве целевой функции принимаем критерий, имеющий технологическую природу – производительность установки, показатели качества получаемого продукта (степень превращения в реакторах).