Смекни!
smekni.com

Технологический процесс балансировки (стр. 4 из 15)

- модуль гальванической развязки сигналов. Является аппаратным модулем. Применяются оптроны. Выполняет две функции: защищает от помех микропроцессорную систему и формирует на выходе сигнал ТТЛ уровня;

- модуль связи с контроллером робота. Реализован аппаратно. Предназначается для коммутации контроллера с контроллером робота;

- модуль ввода данных - программный модуль выполняет чтение данных из модулей, запись в память;

Функциональная схема системы управления показана на чертеже ДП 1.22030165.17.11.29.00.00 Д2. Модули разделяются на программные и аппаратные. Существуют функции, которые выполняются или только программно, или только аппаратно. Проблемы разделения не существует. Существуют функции, которые могут быть выполнены альтернативным путем. Они могут быть выполнены программно, аппаратно либо программно-аппаратно. При выборе реализации функций используют следующие критерии:

- качество исполнения данной функции (точность, надежность и т.д.);

- стоимость реализации функции.

Вопросы качества либо рассчитываются, либо определяются методом эксперимента. Наиболее дешевый способ реализации функции - это программный. Поэтому всё, что можно сделать программным путём, необходимо реализовать в программе.

3.3 Разработка циклограммы работы установки

Для обеспечения синхронности работы системы управления необходимо разработать циклограмму её работы. Циклограмма позволяет детализировать работу агрегатов при срабатывании определённых датчиков в различные моменты времени.

Тормозной барабан поступает на секцию конвейера-загрузки - срабатывает датчик наличия (Х1), привод конвейера включается, конвейер перемещает тормозной барабан в зону подъема тормозного барабана – срабатывает датчик наличия (Х2), поступает сигнал на высший уровень – конвейер останавливается

Считываются сигналы S1-S7 с измерительного устройства балансировочной установки.

- Если имеется сигнал S7 «Тормозной барабан в допуске» подъемное устройство не срабатывает, срабатывает датчик наличия (Х22), привод конвейера включается, конвейер перемещает тормозной барабан в зону разгрузки – срабатывает датчик наличия (Х23), поступает сигнал на высший уровень – конвейер останавливается.

включается привод конвейера разгрузки, конвейер перемещает тормозной барабан в зону разгрузки.

- Если сигнал S7 отсутствует, в соответствии с сигналами S1-S6 выбирается нужное количество грузов:

Сигнал S1 – 1 маленький грузик

S2 – 2 маленьких грузика

S3 – 1 большой грузик

S4 – 2 больших грузика

S5 – 4 больших грузика

S6 – 8 больших грузиков

Сигналы S1, S2 складываются и в соответствии с результатом отсчитываются маленькие грузики.

Сигналы S3- S6 складываются и в соответствии с результатом отсчитываются большие грузики.

Далее осуществляется подъем передней (Х19) затем задней Х(21) колонн механизма подъема барабана.

Контейнер занимает среднее (Х9, Х24), крайнее левое (Х10, Х24) или крайнее правое (Х9, Х23) положение в зависимости от расстановки грузиков в зависимости от величины дисбаланса.

Проверяется наличие грузов в таре «М» (Х3) и в таре «Б» (Х4)

Пневмоцилиндр толкателя маленьких грузов вытягивается (Х6), выталкивая маленький грузик из тары, и втягивается (Х5), захватывая следующий грузик. цикл повторяется 1 или 2 раза в соответствии с необходимым количеством грузиков.

Пневмоцилиндр толкателя больших грузов вытягивается (Х8), выталкивая грузик из тары, и втягивается (Х7), захватывая следующий грузик. цикл повторяется 1, 2, 4 или 8 раз в соответствии с необходимым количеством грузиков.

Контейнер занимает среднее (Х10) положение для захвата грузов захватным устройством манипулятора.

Пневмоцилиндр каретки выдвигается вперед (Х13) в позицию захвата грузиков манипулятором, включается электромагнит захватного устройства, Пневмоцилиндр каретки выдвигается назад в исходное положение (Х12) Манипулятор опускается вниз до тормозного барабана (Х15) Пневмоцилиндр фиксирующего устройства выдвигается вперед (Х17), включается электромагнит фиксирующего устройства, электромагнит захватного устройства отключается, манипулятор поднимается в исходное положение (Х14).

Сварочный робот подводит сварочную горелку в зону приварки и приваривает балансировочные грузы. По окончании процесса сварки робот выдает сигнал приварка грузов окончена (S8)

Выключается электромагнит фиксирующего устройства, Пневмоцилиндр фиксирующего устройства выдвигается назад (Х16)

Далее осуществляется опускание задней Х(20), а затем передней (Х18) колонн механизма подъема барабана.

Срабатывает датчик наличия (Х22), привод конвейера включается, конвейер перемещает тормозной барабан в зону разгрузки – срабатывает датчик наличия (Х23), поступает сигнал на высший уровень – конвейер останавливается.

3.4 Выбор датчиков, исполнительных устройств

Для управления ходом технологического процесса необходимо на соответствующем оборудовании расставить датчики. Количество и тип датчиков определяется исходя из следующих условий:

- количество датчиков должно быть достаточным, но не избыточным. При увеличении количества датчиков увеличивается стоимость системы вследствие необходимости установки дополнительных средств сопряжения (стабилизаторы, ограничители, оптроны, мультиплексоры и т. д.);

- тип датчика зависит от того, на какие действия он должен срабатывать (перемещение, вращение, угол поворота, наличие объекта в рабочей зоне, изменение различных физических параметров окружающей среды, таких как температура, освещённость, давление и проч.).

На конвейер-загрузки устанавливается два датчика – на наличие заготовки в начале конвейера и в конце (в позиции подъема тормозного барабана), соответственно датчики Х1, Х2.

На конвейер-разгрузки устанавливаются такие же датчики Х22, Х23.

На устройстве набора грузов устанавливаются следующие датчики:

Х3 – датчик, сигнализирующий о наличии маленьких балансировочных грузов в таре.

Х4 – датчик, сигнализирующий о наличии больших балансировочных грузов в таре.

Х5 – датчик, сигнализирующий о нахождении поршня пневмоцилиндра толкателя маленьких грузов в крайнем левом положении;

Х6 – датчик, сигнализирующий о нахождении поршня пневмоцилиндра толкателя маленьких грузов в крайнем правом положении;

Х7 – датчик, сигнализирующий о нахождении поршня пневмоцилиндра толкателя больших грузов в крайнем правом положении;

Х8 – датчик, сигнализирующий о нахождении поршня пневмоцилиндра толкателя больших грузов в крайнем левом положении;

Х9 – датчик, сигнализирующий о нахождении поршня пневмоцилиндра контейнера в крайнем левом положении;

Х10 – датчик, сигнализирующий о нахождении поршня пневмоцилиндра контейнера в среднем положении;

Х11– датчик, сигнализирующий о нахождении поршня пневмоцилиндра контейнера в крайнем правом положении;

Х12 – датчик, сигнализирующий о нахождении поршня пневмоцилиндра каретки во втянутом положении;

Х13 – датчик, сигнализирующий о нахождении поршня пневмоцилиндра каретки в вытянутом положении;

На манипулятор устанавливаются следующие датчики:

Х14 – датчик, сигнализирующий о нахождении поршня пневмоцилиндра манипулятора во втянутом положении;

Х15 – датчик, сигнализирующий о нахождении поршня пневмоцилиндра манипулятора в вытянутом положении;

На устройство, фиксирующее балансировочные грузы во время сварки устанавливаются следующие датчики:

Х16 – датчик, сигнализирующий о нахождении поршня пневмоцилиндра с электромагнитом фиксирующим грузы на барабане во втянутом положении;

Х17 – датчик, сигнализирующий о нахождении поршня пневмоцилиндра с электромагнитом фиксирующим грузы на барабане в вытянутом положении;

На устройство, устанавливающее тормозной барабан в положение, удобное для сварки устанавливаются следующие датчики:

Х18 – датчик, сигнализирующий о нахождении поршня переднего пневмоцилиндра подъемника во втянутом положении;

Х19 – датчик, сигнализирующий о нахождении поршня переднего пневмоцилиндра подъемника в вытянутом положении;

Х20 – датчик, сигнализирующий о нахождении поршня заднего пневмоцилиндра подъемника во втянутом положении;

Х21 – датчик, сигнализирующий о нахождении поршня переднего пневмоцилиндра подъемника в вытянутом положении;

В данной установке используются два вида бесконтактных датчиков:

- индуктивные

- магнитные

Индуктивные сенсоры

Индуктивный датчик предоставляет необходимые сигналы о конечных положениях объектов, а так же может служить в качестве импульсного датчика для задания численных значений или регистрации частоты вращения. В настоящее время индуктивные датчики (индуктивные сенсоры) незаменимы в промышленности. Преимущества в сравнении с механическими концевыми выключателями очевидны: бесконтактное срабатывание, абсолютная износоустойчивость, высокая частота, точность переключений. Кроме того, индуктивные датчики положения нечувствительны к вибрации, пыли и влажности. Индуктивные датчики приближения используют физический эффект изменения добротности резонансного контура, вызванного потерями на вихревые токи в проводящих материалах. Индуктивно-емкостный колебательный контур генерирует высокочастотное электромагнитное поле. Это поле распространяется с активной поверхности датчика. Если в это поле попадает электропроводящий материал (металл), то в соответствии с законом электромагнитной индукции возникают вихревые токи, поглощающие энергию колебательного контура. Вследствие этого амплитуда колебаний уменьшается. Это изменение преобразуется в коммутационный сигнал. Данный принцип действия позволяет обнаруживать все металлы, независимо от того, находятся они в подвижном состоянии или нет.