Таблица 8 Технические характеристики контроллера omronCJ1M
Параметр | Значение |
Класс защиты | IP20 |
Напряжение питания и токопотребление, VDC, VAC, mA | 24; 30,60; 100-240 ; 6,20 |
Порт связи | 2хRS232, Ethernet (опционально) |
Сети | Ethernet, Controller Link, послед. интерфейс, DeviceNet, PROFIBUS-DP, CAN, CompoBus/S |
Объем памяти данных, kWords | 32 |
Объем памяти программы, kSteps | 10-20 |
Максимальное количество точек ввода-вывода | до 640 |
Время выполнения инструкции, мкс | 0,1 |
Рабочая температура, °С | -10 - + 55 |
3.6 Проектирование электрической схемы подключений СУ
Сигналы от датчиков поступают в модуль входа CJ1W-ID211. Сигналы из модуля выхода CJ1W-OD211 поступают на исполнительные механизмы. Схема подключений показана на чертеже ДП 1.22030165.17.11.29.00.00 Э5.
Микропроцессорная система состоит из входного, выходного блоков и блока вычисления.
Блок вычислений представляет собой модуль CPU-23 контроллера OMRONSJ1M.
Входной блок состоит из следующих элементов:
- входной цифровой модуль CJ1W-ID211 для приема сигнала от датчика реле о наличии потока углекислого газа в шланге.
Входные и выходные модули уже имеют в своем составе реализованные гальванические развязки, предназначенные для защиты внутренних элементов модулей от скачков напряжения.
Выходной блок состоит из следующих элементов:
- выходной модуль CJ1W-OD211 обеспечивает как гальваническую развязку, усиление и коммутацию.
Входной модуль CJ1W-ID211 имеет 16 каналов, 2 группы по 8 в каждом 24V. Технические характеристики входного модуля CJ1W-ID211 приведены в таблице 9.
Выходной модуль CJ1W-OD211 имеет 16 каналов с выходными сигналами 24V. Технические характеристики выходного модуля CJ1W-OD211приведены в таблице 10.
Таблица 9 Технические характеристики входного модуля
Параметр | Значение |
Количество входов | 16 |
Нормальный входной сигнал, В | 24 |
Максимальное напряжение на входе, В | 30 |
Параметр | Значение |
Логическая единица минимум, В | 14,4 |
Логический нуль минимум, В | 5,5 |
Входной ток при 24V, mA | 7 |
Время вкл./выкл., мс | 2 – 8,5 |
Потребление, В | 5 |
Все входы включены, mA | 80 |
Все входы выключены, mA | 12 |
Рабочая температура, °C | от -40 до +55 |
Таблица 10 Технические характеристики выходного модуля
Количество выходов | 16 |
Нормальное напряжение на выходе, В | 24 |
Максимальный ток на выходе, A/канал | 0,5 |
Гальваническая развязка между выходами и логической частью, кВ | 1,5 |
Защита от короткого замыкания | электронная |
Защита от обратного тока | электронная |
Тепловая защита | электронная |
Ток потребления (утечки) при “0”, mA | 200 |
Падение напряжения при “1”, В | 0,28 |
Время вкл/выкл., нс | 100/400 |
Все выходы включены, mA | 120 |
Все выходы выключены, mA | 40 |
Нормальное напряжение, В | 24 |
Допустимый диапазон, В | от 18 до 35 |
Электрооборудование установки предназначено для :
-управления загрузочным устройством детали;
-управления балансировочным устройством;
-управления сварочным роботом
-управления устройством набора грузиков
-управления устройством выгрузки детали.
Питание установки осуществляется от 3-х проводной сети переменного тока напряжением ~380 В и частотой 50 Гц. Ввод питания осуществляется на боковую стенку электрошкафа на вводной клеммник. Защита от токов короткого замыкания – предохранителями и расцепителями максимального тока автоматических выключателей
В цепях управления используется напряжение = 24В для питания плат контроллера, катушек реле, магнитов и пускателей.
Напряжение 24 В берется с выхода импульсного блока питания 24В 40А, 3-фазы QUINT-PS/ 3AC/24DC/40 Phoenix Contact
Всё электрооборудование размещено внутри одного электрошкафа.
Управление приводом шпинделя осуществляется электродвигателем, в качестве которого использован асинхронный двигатель фирмы Сервотехника. Для его управления используется преобразователь фирмы КЕВ 13.F5.M1D-39A Привод управляется аналоговым сигналом от измеритяля дисбаланса .
Электрические связи между электрошкафом и электрооборудованием станка осуществляются гибкими жгутами и кабелями. Подсоединение производится через клеммники.
4. Расчетная часть
Для приведения в действие команд контроллера необходимы исполнительные устройства. Исполнительные устройства должны выполнять функции системы, иметь малую инерционность, обладать устойчивостью и управляемостью, достаточным быстродействием.
Работа устройств набора грузиков, подъема барабана осуществляется при помощи пневмоцилиндров. Воздух в полость цилиндра попадает при помощи электромагнитного клапана, который в свою очередь управляется контроллером через реле.
Управление катушками электромагнитных клапанов осуществляется с помощью реле, включенных последовательно с катушкой. Питание катушек электромагнитных клапанов осуществляется напряжением 220В переменного тока. Ток в катушке 250 мА.
Захватное устройство манипулятора представляет собой электромагнит, управляемый контроллером через реле.
В устройстве набора грузиков всю работу выполняют пневмоцилиндры и два электромагнита.
Расчет пневматических цилиндров.
Пневматические цилиндры предназначены для преобразования энергии сжатого воздуха в механическое линейное перемещение [8]. Пневмоцилиндры бывают одностороннего и двухстороннего действия, с односторонним или двухсторонним (проходным) штоком. В пневмоцилиндрах одностороннего действия поршень может перемещаться под действием воздуха только в одну сторону (воздух подается только с одной стороны от поршня), а возврат осуществляется пружиной или внешними силами, при этом воздух, поданный в цилиндр, должен быть сброшен. Следует учитывать, что возвратная пружина снижает усилие, развиваемое цилиндром под действием сжатого воздуха, а усилие при возврате в исходное положение определяется жесткостью и степенью сжатия пружины. Односторонние пневмоцилиндры бывают двух модификаций: с пружиной в штоковой полости цилиндра (шток пневмоцилиндра нормально втянут, при подаче воздуха выдвигается); и с пружиной в бесштоковой полости (шток нормально выдвинут). В пневмоцилиндрах двухстороннего действия перемещение поршня под действием сжатого воздуха происходит в прямом и обратном направлениях.
В конструкции большинства пневматических цилиндров предусмотрены специальные устройства демпферы, предотвращающие удар в конце хода поршня по крышке. В самом простейшем случае демпферы представляют собой резиновые шайбы, закрепленные на поршне или на крышке внутри цилиндра. Такие демпферы используются в цилиндрах небольших диаметров, а также в короткоходовых цилиндрах, где сила удара невелика. В более крупных цилиндрах для торможения, а, следовательно, и для исключения удара, используется дросселирование (создание сопротивления) воздуха, сбрасываемого из полости цилиндра. Это дросселирование происходит только в конце хода штока, включается автоматически, а интенсивность торможения определяется степенью открытия дросселя и регулируется винтом.
Также пневмоцилиндры можно разделить на магнитные и немагнитные. Магнитные цилиндры имеют закрепленный на штоке магнит, с помощью которого можно определять местоположение поршня цилиндра. Для этого на корпус пневмоцилиндра устанавливается чувствительный элемент, реагирующий на приближение магнита поршня, который при попадании в магнитное поле замыкает электрическую цепь. Также существуют датчики, непрерывно по всей длине хода поршня определяющие его координату. Такие датчики используются для пневмоприводов с обратной связью (следящие приводы) и имеют относительно высокую стоимость.
При выборе пневмоцилиндра помимо его типа необходимо определить его размер. Для этого можно воспользоваться расчетным методом, специализированными компьютерными программами, графическими методами и таблицами, изложенными в специальной литературе.
Воспользуемся для определения нужного размера пневмоцилиндра расчетным методом:
При расчетном методе, оценив необходимое усилие на штоке и зная давление в пневмосистеме, определяем площадь поршняS, которая равна отношению усилияF к давлению сжатого воздухаР: