Лист толщиной 20мм, полученный из «огарка» (часть электрода не подвергшийся ЭШП) имел предел текучести 560-770МПа и ударную вязкость 113-135Дж/см2, а лист 20 мм (ЭШП) имел предел текучести787-918МПа и ударную вязкость 172-215Дж/см2.
3.5 Термообработка аустенитных азотсодержащих коррозионно-стойких сталей
Термическая обработка нержавеющих сталей аустенитного класса сравнительно проста и заключается в закалке в воде с 1050—1100°С. Фактически это отжиг на гомогенизацию (гомогенизационный отжиг) с охлаждением в воде – аустенитизация.
Рис. 10. Схема закалки нержавеющей стали
Нагрев до этих температур вызывает растворение карбидов хрома (М23С6), а быстрое охлаждение фиксирует состояние пересыщенного твердого раствора. Медленное охлаждение недопустимо, так как при этом, как и при отпуске, возможно выделение карбидов, приводящее к ухудшению пластичности и коррозионной стойкости. Кроме того, при закалке происходят рекристаллизационные процессы, устраняющие последствия пластической деформации, которой часто подвергаются нержавеющие аустенитные стали.
Механические свойства аустенитных нержавеющих сталей в закаленном (смягченном) состоянии характеризуются низким значением предела текучести, невысокой прочностью и очень высокой пластичностью.
Очевидно, что этот способ упрочнения применим лишь для так видов изделий, как тонкий лист или лента, проволока и т. п. [7]
Изменяя режимы термической обработки высокоазотистых хромистых сталей, можно влиять на фазовые и структурные превращения при нагреве и охлаждении сталей и как следствие на их свойства. Фазовые превращения, происходящие при нагреве сталей с аустенитной структурой, связаны с образованием нитридов, начинающимися при ~500°С (зонная стадия) и заканчивающимися при ~730°С (стадия выделений). Нитриды, обеспечивающие высокую твердость стали, весьма дисперсны и имеют вид тонких реек. Коагуляция нитридов при 700-800°С приводит к резкому снижению твердости. После выдержки при 950-1050°С твердость закаленных сталей достигает величины, близкой к твердости закаленной высокоуглеродистой стали с 0,6-1,0% С.
В процессе охлаждения (его скорость в наших экспериментах составляла 120°С/мин.) сталей происходит γ→α -превращения по двум механизмам:
- диффузионному (при 680°С), с распадом обедненного азотом аустенита на феррит с крупными зернами полиэдрической формы и нитриды хрома;
- мартенситному, с образованием пластинчатого мартенсита из обедненного азотом аустенита.
При повышении температуры нагрева предварительно закаленных сталей температура начала мартенситного превращения снижается. Например, для стали, содержащей 18% хрома и 0,9% азота, после нагрева до 900, 1100 и выше 1150°С γ→α превращение по мартенситному механизму протекает при температурах 305, 110°С и ниже комнатной соответственно. Чем выше температура нагрева под закалку, тем большее количество нитридов растворяется, что приводит к уменьшению количества α- фазы и понижению твердости. [5]
Термическая обработка листа толщиной 10мм показала возможность снятия избыточного наклепа и повышения ударной вязкости. Полученные значения предела текучести и ударной вязкости составили соответственно 670-770Мпа (вместо 920-990МПа до термической обработки) и 280-325Дж/см2 (вместо 135-160Дж/см2 до термической обработки).
Радикальный способ упрочнения аустенитных сталей — холодный наклеп; при деформации порядка 80—90 % предел текучести достигает 980—1170 МПа, а предел прочности 1170—1370 МПа при сохранении достаточно высокой пластичности. [7]
Глава 4. Свойства аустенитных азотсодержащих коррозионно-стойких сталей
В настоящее время в химической промышленности находят применение хромоникелевые стали типа 18-12 и 20-20 (иногда легированные 2—3% Мо) с крайне низким содержанием углерода — не более 0,03% (в отдельных случаях не более 0,02%). Эти стали не склонны к межкристаллитной коррозии в ряде весьма агрессивных сред и их не требуется стабилизировать титаном или ниобием. Однако из-за малого содержания углерода и повышенной склонности к рекристаллизации такие стали обладают пониженным пределом текучести в сравнении с классическими нержавеющими сталями,имеющими и без того невысокий предел текучести. С целью повышения прочностных свойств малоуглеродистых нержавеющих сталей без ущерба для коррозионной стойкости их легируют азотом в небольших количествах, что вызывает упрочнение за счет растворения азота в γ-твердомрастворе.
Рис. 11. Влияние растворенного азота на предел текучести (σ0,2) стали.
Рис. 12. Влияние азота на механические свойства малоуглеродистых аустенитных сталей Cr-Ni, Cr-Ni-Mo и Cr-Ni-Mn-Mo сталей типа 18-10, 18-14-3 и 20-12-10-3
Влияние азота, растворенного в γ-твердом растворе, на изменение механических свойств ряда хромоникелевых, Сr— Ni — Мо и Сr — Ni — Мn сталей иллюстрируют рис. 11 и 12, из рассмотрения которых следует, что упрочнение пропорционально содержанию азота, растворенного в стали. Для стали Х18Н10 при 0,02% С и 0,15% N предел текучести достигает 30 кГ/мм2. Количество растворенного азота в свою очередь тем больше, чем выше концентрация хрома и марганца. Упрочнение, связанное с растворением азота в твердом растворе, вызывает незначительное уменьшение пластичности и ударной вязкости аустенитных сталей в отличие от дисперсионно-твердеющих сталей, в которых упрочнение сопровождается значительной потерей вязкости. В γ-твердом растворе стали 00ХТ5НТ4АМЗ, закаленной после аустенитизации при температуре 1050°С, может быть растворено до 0,20% N, а в случае дополнительного легирования марганцем (сталь 00Х18Н12Г10АМЗ) в твердом растворе растворяется до 0,34% N . Следует, однако, учитывать, что растворимость азота в твердом растворе и в расплаве различна, поэтому фактическое содержание азота в стали зависит от условий выплавки, разливки, кристаллизации слитка и других факторов.
Азот, находящийся в γ-твердом растворе низкоуглеродистых хромо-никелевых сталей типа 18-12, не ухудшает их общей коррозионной стойкости в кипящей 65%-ной HNO3 и не ухудшает поведения металла после провоцирующего отпуска в критическом интервале температур. Понижая содержание углерода, можно достигнуть существенного улучшения коррозионной стойкости стали с повышенными прочностными свойствами. Так, уменьшение содержания углерода в стали 00Х18Н14АМЗ (0,18% N) с 0,047 до 0,015% приводит к увеличению, минимального времени до возникновения склонности к межкристаллитной коррозии с 30 мин до 1000 ч при испытании по методу AM (рис. 13).
Рис. 13. Результаты испытаний на межкристаллитную коррозию хромоникельмолибденовых сталей с содержанием 0,015 и 0,047% С, а также с повышенным содержанием азота в кипящем растворе сульфата меди в серной кислоте: 1 – коррозия отсутствует; 2 — коррозия на глубину до 0,05 мм; 3 — слабая коррозия; 4 — сильная коррозия
Содержание, % | ||||
C | Si | Mn | Cr | |
а | 0,015 | 0,5 | 1,39 | 17,53 |
б | 0,047 | 0,46 | 1,50 | 17,97 |
Ni | Mo | N | ||
а | 13,97 | 2,87 | 0,182 | |
б | 14,97 | 2,81 | 0,184 |
На примере стали 00Х18Н14АМЗ можно также сделать вывод, что в небольших количествах азот не оказывает отрицательного влияния на поведение однофазной аустенитной стали в условиях коррозии под напряжением в кипящем 42%-ном растворе хлористого магния. С учетом области разброса (рис. 14) предел длительной коррозионной прочности образцов с 0,04 и 0,16% N практически одинаков.
Рис. 14. Результаты испытаний на коррозионное растрескивание под напряжением Сr — Ni — Мо сталей с присадкой и без присадки азота в кипящем 42% -ном растворе хлористого магния. Поверхность образцов электрополирована и пассивирована в 15% -ном растворе азотной кислоты в течение 1 ч при 40°С. Стрелкой отмечено появление отдельных надрывов
Содержание, % | ||||
C | Si | Mn | Cr | |
а | 0,024 | 0,4 | 1,42 | 17,64 |
б | 0,030 | 0,42 | 1,23 | 18,50 |
Ni | Mo | N | ||
а | 14,40 | 2,98 | 0,04 | |
б | 14,07 | 2,97 | 0,16 |
В малоуглеродистой хромоникелевой стали, легированной азотом, наличие стабильной аустенитной структуры и отсутствие второй фазы исключает опасность структурно-избирательной коррозии и делает сталь не подверженной охрупчиванию при отпуске в интервале температур 600—900°С. Подобные стали хорошо полируются в противоположность титан содержащим нержавеющим сталям, обработка которых затруднена из-за образования скоплений или больших размеров карбонитридов.
Для сварки сталей, не подвергаемых дальнейшей термообработке, могут быть использованы аустенитные присадочные материалы из Сr — Ni—Мо сталей, а для сварки конструкций, подвергаемых термообработке, используют присадочный материал, содержащий примерно 0,03% С, 18% Сr, 14% Ni, 10% Мn, 2,5% Мо и 0,2% N. [6]