Смекни!
smekni.com

Зернинна структура металів (стр. 3 из 4)

Процес формування конденсатів з парової фази полягає в тому, що атом чи молекула парової фази при зустрічі з підложкою, як правило, адсорбується і майже миттєво здобуває температуру підложки. Перш ніж десорбуватися чи утворити зародок, адсорбований атом мігрує по поверхні підложки. Утворення зародків відбувається після того, як на підложці утворилося кілька шарів конденсованої речовини. Після цього відбувається утворення зародків у кілька атомів, тобто їхній розмір на декілька порядків відрізняється від зародків при кристалізації з розплаву. Це приводить до того, що структура конденсатів має меншу розмірність, чим ливарних матеріалів. На наступному етапі спостерігається ріст зародків до утворення суцільної плівки.

Для всіх речовин спостерігається кілька механізмів росту плівок, при температурах підложки ТП>2/3ТПЛ ріст конденсату здійснюється по механізму пар→рідина→кристал. На початковій стадії конденсації при такому механізмі зародки являють собою крапельки рідини конденсуємої речовини, що через якийсь час мимовільно по мірі зросту переходять у кристалічний стан. Температура, при якій відбувається кристалізація істотно менше температури плавлення речовини, що конденсується, у масивному стані. Механізм конденсації пара→рідина→кристал приводить до утворення своєрідних дефектів структури - конденсат, що впливають на його фізичні властивості.

При температурах підкладки Тп<2/3Тпл конденсація відбувається по механізму пар→кристал. При цьому механізмі конденсації зародки конденсату формуються відразу у виді кристалічних часток. Як у першому, так і в другому випадку ріст зародків відбувається за рахунок приєднання мігруючих по підложці адсорбованих атомів і за рахунок влучання атомів прямо з парової фази. У деяких випадках, особливо для металів з високим тиском насичених парів при температурах Тп<1/3Тпл спостерігається механізм конденсації пара→рідина→аморфне тіло. Процес формування суцільної плівки і конденсату можна умовно розділити на кілька етапів: зародкоутворення, формування острівців конденсату і їхня коалесценція, формування незаповнених каналів і суцільної плівки з порами.

На зернинну структуру металевих матеріалів, одержуваних при кристалізації з парової фази, впливають такі фактори як температура підложки, швидкість конденсації, спосіб випару, ступінь вакууму, геометрія осадження, природа і стан матеріалу, що випаровується, тип і стан підложки. Варіюючи ці параметри можна регулювати розмір зерна. Збільшення температури підложки приводить до збільшення зерен, швидкість конденсації в основному впливає прямо протилежно впливу температури підложки, тобто в широкому діапазоні швидкостей конденсації, її збільшення приводить до зниження розміру зерна. Чим вище ступінь вакууму і нижче тиск залишкової атмосфери, тим більше розміри зерен, тим менше ступінь дефектності. Вплив усіх перерахованих вище факторів на структуру виявляється одночасно, взаємозалежно. Деякі з них діють прямо протилежно один одному, тому для одержання необхідної структури необхідно їх враховувати.


2. ВИБІР НАПРЯМКУ ДОСЛІДЖЕННЯ

зернинний метал сплав кристалізація

Відомо, що рівень фізико-механічних властивостей псевдосплавів бінарних систем Cu–Mo, Cu–W, Cu–Ta з матричною структурою, які отримані методами порошкової металургії залежить від ступеня дисперсності структурних елементів. Разом з тим, синтез цих матеріалів з розміром зерен матриці та часток зміцніючої фази <1 мкм та 0,1 мкм відповідно, є важкою технологічною проблемою. Застосування технології вакуумного осадження дозволяє в значній мірі, навіть до однорідних сумішей на атомарному рівні підвисити дисперсність структурних елементів таких матеріалів. В результаті досягається новий більш високий рівень фізико-механічних властивостей. Разом з тим, розмір зерен матриці, морфологія часток зміцніючої фази, ступінь розчинності залежіть від певних факторів: температури підложки та швидкості осадження компонентів, вмісту та типу легуючих елементів та ін.

В цьому зв’язку задачею даної роботи є порівняльне вивчення зернинної структури композитів, її взаємодії з технологічними параметрами отримання фольг Cu–Mo, Cu–W, Cu–Ta, а також визначення температурно-часових областей стабільності структури.


3.ТЕОРЕТИЧНІ ТА ЕКСПЕРЕМЕНТАЛЬНІ ДОСЛІДЖЕННЯ

3.1 Матеріал дослідження

Матеріалом дослідження є дисперсно-зміцнений композит міді зі зміцнюючими частками молібдену, вольфраму, танталу.

Плівки Cu-Mo, Cu-W, Cu-Ta були отримані методом електронно-променевого випаровування у вакуумі ( ступінь вакууму 10-4 – 10-5 мм. рт. ст.). Осадження плівок проводилося на ситалову підложку, яка підігрівалась, температура до 500 °С зі швидкістю 9-10 мкм/хв. Отримані плівки мали товщину 5-15 мкм при вмісті зміцніючої фази 0,1-5 %

3.2 Отримання електронно-мікроскопічних знімків

Для електронно-мікроскопічних досліджень виколювали зразки діаметром 3 мм, а потім стоншували методом струменевої електролітичної поліровки. Склад електроліту: ортофосфорна кислота густиною 1,55 г/см3. Режим стоншення U=14-15 В, І=17 мА. Електронно-мікроскопічні дослідження проводили на електронних мікроскопах ПЕМ-100 та ЕМВ-100Л. При цьому зі зразків були отримані знімки, які були початковим матеріалом для отримання даних про розмір зерна.

При визначенні параметрів просторової структури по електронно-мікроскопічним знімкам виникає ряд труднощів, які обумовлені наступними причинами: електронно-мікроскопічний знімок є пласким відображенням об’єму, тому в випадку однакової швидкості розчину матриці та частки на знімку присутні зображення як часток, так і їх розрізів верхньою та нижньою поверхнею зразка. Коли матеріал часток розчиняється швидше, ніж матеріал матриці, тоді на верхній та нижній поверхні будуть присутні тільки сліди часток, розрізнити які дуже складно. В тому випадку, коли частки не розчиняються в електроліті, їх зображення на знімку будуть в натуральний розмір. Окрім того, на знімку можливе багатократне накладання зображень часток, а визначити густину накладання часто неможливо. Але для малих концентрацій накладання чи зовсім відсутнє, чи цим ефектом можна зневажити. Ця умова виконувалась при проведенні цих експериментів. Так, як вміст зміцнюючих часток в зразках не перевищував декількох об’ємних відсотків.

За допомогою вимірювального мікроскопу МІМ-2 вимірювали розмір зерен в різних напрямках на декількох знімках. Отримані дані використовували для побудови гістограм їх розмірів. Гістограми будували в координатах відносний розмір зерен – кількість зерен даного розміру в відсотках.

3.3 Розрахунок розміру зерна по електронно-мікроскопічним знімкам.

Розрахунок проводили двома методами.

Метод січних (визначення умовного розміру зерна) полягає в тому, що на зображенні проводиться визначене число ліній у різних напрямках. Потім підраховується кількість перетинів границь зерен кожною лінією, причому перше зерно враховується, а останнє відкидається. Після чого сумується кількість перетинань границь по всіх зернах для всіх ліній.

Умовний розмір зерна при цьому визначали по формулі:

dусл=∑L/K·∑n, (2.1)

де К – збільшення;

∑L – сумарна довжина сiчних ліній;

∑n – сумарна кількість перетинань границь по всіх зернах для всіх ліній.

Другий метод полягає у підрахунку кількості зерен, що приходяться на одиницю поверхні шліфа.

Загальна кількість зерен складає:

М=m1+

m2+
m3+
m4, (2.2)

де m1- кількість зерен повністю видних на шліфі;

m2, m3, m4 - кількість зерен видних на шліфі на половину, на третину та на чверть відповідно.

Потім визначаємо середню площину перетину зерна (Sа) по формулі:

(2.3)

де S- площина шліфа;

К- збільшення;

М- загальна кількість зерен.

Середній діаметр зерна (dm)визначаємо по формулі:

, (2.4)

4. УЗАГАЛЬНЕННЯ ТА ОЦІНКА РЕЗУЛЬТАТІВ ДОСЛІДЖЕНЬ

4.1 Дослідження зернинної структури конденсатів Cu–Mo, Cu–W, Cu –Tа

Зернинна структура конденсатів мiдi (тигельної та електронно-променевої) відрізняється від матеріалів ливарного походження меншим розміром зерна, який у чистої конденсованої мiдi в залежності від умов отримання коливається у межах від 0,8 мкм, тому дослідження здійснювались методом електронної мікроскопії. На структуру металевих матеріалів, які отримуються методом вакуумної конденсації впливають різні технологічні параметри.

Важливим результатом є те, що виявлено сильний вплив легуючих елементів молібдену, вольфраму, танталу на розмір зерна мідної матриці. Однак належить відмітити те, що значної ризниці при невеликих концентраціях між зазначеними елементами не виявлено (рис. 4.1). Частки другої фази: молібден, вольфрам, тантал, принаймні на межах зерен формуються при самому малому відсотковому вмісті, тому як при цьому для усіх вивчаємих бінарних систем спостерігається різке зниження розміру зерна.