Проте при збільшенні концентрації легуючих елементів більше ніж 1% для систем Cu–Mo, Cu–W подальше зниження розміру зерна не спостерігається, крива виходить до насичення. Це пов’язано з тим, що зменшення відстані між частками не призводить до додаткового зниження розміру зерна, межі зерен застабілізовані. Тоді як для фольг Cu–Ta спостерігається подальше зменшення розміру зерна до 0,05 мкм, при вмісті ~1 ваг. %. Цей важливий експериментальний результат засвідчує про наноструктурний стан фольг Cu–Ta.
Сильним технологічним фактором, який ефективно впливає на розмір зерна є температура поверхні конденсацiї (температура пiдложки Тп). У бінарних системах Cu–Mo, Cu–W, Cu–Tа залежність розміру зерна мідної матриці послаблюється у порівнянні з конденсатами чистої міді. Так збільшення Тп від 100 0C до 450 0C призводить до збільшення розміру зерна в два рази. Це пояснюється тим, що частки другої фази, які розташовані по межам зерен, їх стабілізують.
Відпал проводили у інтервалі температур 400-900 °С на протязі 0,25-4 часів. Наприклад, для системи Cu-W при збільшенні температури відпалу від 600 °С до 900°С середній розмір зерна поступово зростає і складає біля 0,35 і 0,45 мкм відповідно (рис. 4.2), гістограми розподілення зерен по розмірам мають різний вид (рис. 4.3), це потребує подальшого вивчення цих об'єктів дослідження.
Виявлені явища стабiлiзацiї розміру зерна для бінарних систем Cu–Mo, Cu–W, Cu–Tа є дуже важливим чинником для отримання конденсатів або покриттів з дрібним розміром зерна, так як структура та розмір зерна визначають фізичні властивості матеріалу. Важливим чинником є те, що стабільність розміру зерна зберігається в широкому температурному інтервалі, до 500 0C, в той час як у мідних сплавів ливарного походження зберігається лише до 350 °C.
Сu-W, Тп=40-140 ºС Сu-Ta, Тп=40-140 ºС
Збільшення у 10000 раз Збільшення у 10000 раз
Рисунок 4.1 Електронно-мікроскопічне зображення конденсатів Cu-W, Cu-Tа
Cu-W, Tвідп=900 °С, 30' Cu-W, Tвідп=600 °С, 30'
Збільшення у 10000 раз Збільшення у 10000 раз
Рисунок 4.2 Електронно-мікроскопічне зображення конденсатів Cu-W після відпалу
Рисунок4.3 Гістограма розподілення зерен по розмірам композита Cu-W
ВИСНОВКИ
1. Проведено дослідження зернинної структури у конденсатах Cu-Mo, Cu-W, Cu-Ta,.
2. Показано, що легування мiдi молібденом, вольфрамом та танталом призводить до різкого зниження розміру зерна мідної матриці, який залежить від концентрації легуючих елементів, температури пiдложки та швидкості конденсацiї.
3. Виявлено, що стабільність розміру зерна бінарних систем Cu-Mo, Cu-W, Cu-Tа зберігається до 500 °C.
СПИСОК ДЖЕРЕЛ ІНФОРМАЦІЇ
1. Бернштейн М.Л., Займовский В.А. Механические свойства металлов. М.: Металлургия. 1979
2. Границы зерен и свойства металлов. Кайбышев О.А., Валиев Р,З. М.: Металлугрия, 1987
3. Горелик С.С. Рекристаллизация металлов и сплавов, М.: Металлургия, 1978
4. Гуляев А.П. Металловедение. Учебник для вузов. 6-е изд., перераб. и доп. М.: Металлургия, 1986
5. Лариков Л.Н., Бюханов А.А., Усов В.В. Влияние микроискажений на анизотропию упругих свойств листов меди в приближении Хилла // Дефектоскопия. 1992. Т.14 №1. С. 34-40
6. Носкова Н.И., Мулюков Р.Р. Субмикрокристаллические и нанокристаллические металлы и сплавы. Екатеринбург: УрО РАН, 2003
7. Носкова Н.И. Прочность, пластичность и разрушение металлов и сплавов с нанокристаллической структурой // Тр. Междунар. науч. конф. «Современное состояние теории и практики сверхпластичности материалов» Уфа: ИПСМ РАН, 2000
8. Прован Дж., Бамиро О. Упругий отклик границ зерен в меди и алюминии// Атомная структура межзеренных границ. М.:Изд-во иностр. Лит., 1978
9. Физическая акустика. Т. 3,ч. Б: Динамика решетки/ Под ред. У. Мэзона. М.:Мир, 1968
10. Хесснер Ф., Хофман С. В кн.: Рекристаллизация металлических материалов: Пер. с англ. М.: Металлургия, 1982