Рис. 19. Экспонирующая ЭЛ-система с прямоугольным лучем переменной формы. 1 - пластины, управляющие формой луча; 2 - вторая квадратная диафрагма; 3 - полученное пятно.
Рис. 20. Символьная проекционная ЭЛ-печать. 1 - отклоняющие пластины; 2 - фокус; 3 - символьные апертурные отверстия; 4 - символьная диафрагма; 5 - полученное изображение (сечение луча).
Сокращение времени обработки в случае проекции фигур переменной формы показано на рис. 21, где сравнивается экспонирование гауссовом лучом, лучами постоянной и переменной форм и проецированием фигур. Чем больше одновременно проецируемая область, тем выше производительность. Время переноса изображения в системах с лучом переменной формы в 16-100 раз короче, чем в системах, использующих гауссов луч.
Рис. 21. Число точек изображения, формируемых круглым гауссовым лучем (а), лучем фиксированной квад-ратной формы (б), лучем переменной формы (в) и проецированием фигур (г).
Для топологического рисунка малой плотности, с изреженными окнами, обычно используют позитивный ЭЛ резист, негатив-ный же предпочтительнее, если доминируют области, подлежащие вскрытию.
Литографический прием, позволя-ющий избежать влияния фактора плотности элементов, состоит в контурном экспонировании фигур рисунка с последующим осажде-нием металла, излишки которого удаляются посредством электро-лиза. Эта технология образно названа “каньонной” литографией в связи с очерчиванием некоторых областей рисунка и истреблением промежутков между ними.
Производительность ЭЛ установок складывается из производительности процессов экспонирования, совмещения, перемещения и подготовки топологической информации.
Время прорисовки изображения электронным лучом T равно сумме времени экспонирования te и ожидания tw:
T= te+ tw. (27)
Время tw включает в себя время численных преобразований, передвижения столика, регулировки позиционирования и т.д. Хотя tw не всегда пренебрежимо мало, мы сосредоточимся на главным образом на рассмотрении te. Если луч с плотностью тока j за время t засвечивает одновременно площадь a, то время, необходимое для экспонирования области площадью A, равно:
te=k(S/j)(A/a), (28)
где k отношение фактически сканируемой области к А, S чувствительность резиста.
Величина k определяется характером топологии и схемой сканирования (k=1 в растровой и k=0.2-0.4 в векторной). Таким образом, для сокращения времени экспонирования необходимо увеличить плотность тока луча j либо общий ток ja. Время ожидания состоит из времени обработки данных и времени установки подобласти экспонирования и столика.
При использовании луча переменной формы основными проблемами являются формирование элементов непрямоугольной формы и коррекция эффектов близости посредством разбиения фигур на области равной дозы. Такой способ коррекции связан с проблемами управления большими объемами данных и потерей производительности.
Резистный материал может взаимодействовать с компонентами ЭЛ систем, порождая такие проблемы, как загрязнение, накопление заряда, плохое совмещение и низкий срок службы оборудования, приводящий к росту затрат времени на ремонт.
Таблица 4. Сравнение ЭЛ-систем
различного типа.
Системы с круглым гауссовым лучом | Многолучевые системы | Системы с лучем переменной формы | |
Преиму-ществаНедо-статки | ПростотаГибкостьПригодность к изгото- влению фотошаблоновОдновременно экспо-нируется лишь одна точкаВысокая яркость ис-точникаНеобходимость быстро действующих аналоговых электрон-ных схем | Параллельная обра-ботка (высокая эффек-тивность экспонирова-ния)Малый ток в пучкеНе требуется быстро-действующих элек-тронных схемСложность перенаст-ройкиСложность совмеще-нияИспользование малых токов луча | Параллельная обра-ботка (высокая эффек-тивность экспонирова-ния)Гибкость, переменная форма лучаПригодность для пря-мого экспонирования на пластине и изготов-ления фотошаблонов (EL-3)Техническая слож-ность (высокая стои-мость)Разрешение зависит от размера луча |
Совмещение.
Послойное совмещение и совмещение рабочего поля в шаговых повторителях составляют часть проблемы точности совмещения топологий. Проектный допуск на точность совмещения предполагает такое размещение рисунка одного слоя приборной структуры над другим, что в приборе реализуются все его целевые характеристики. Общим для всех экспонирующих систем являются послойное совмещение и контроль ширины линии.
Метки для ЭЛ совмещения обычно изготавливаются в виде канавок или выступов в кремнии, а для повышения уровня сигнала обратнорассеянных электронов - из металлов большой атомной массы. В момент прохождения электронного луча над меткой регистрируется изменение количество обратнорассеянных электронов и размеры поля сканирования корректируются до полного совпадения с размерами кристалла. Сигнал совмещения сильно зависит от характеристик подложки, энергии электронного луча, композиции резиста и рельефа резистного покрытия над меткой.
В качестве детекторов могут использоваться микроканальные умножители, сцинцилляторы или диффузионные диоды; важно удовлетворить следующим требованиям:
1) чувствительность и точное позиционирование;
2) рассеяние и вобуляция луча должны быть меньше, чем размеры метки совмещения;
3) согласование размера и формы меток с толщиной резиста;
4) применение корректора данных с высоким отношением сигнал/ шум и петлей обратной связи, позволяющего менять поле сканирования для точного совмещения с кристаллом.
Эффекты близости.
Эффекты близости - основная проблема ЭЛ литографии. При энергии луча 25 кэВ и диаметре 1 мкм полуширина области обратного рассеивания электронов составляет 5 мкм, а при энергии 50 кэВ достигает 15 мкм. Длина пробега в обратном рассеянии пропорциональна Е1.7, где Е- энергия электронов падающего луча. Эффекты близости приводят к нежелательному экспонированию областей, в которые луч непосредственно не направлялся. В зависимости от отсутствия или наличия ближайших “соседей” наблюдается соответственно внутренний или взаимный эффект близости. Внутренний эффект близости, обусловленный обратным рассеянием электронов за пределы непосредственно экспонируемой области, приводит к тому, что уединенные мелкие элементы топологии приходится экспонировать с дозой Q, заметно большей Q0, необходимой для больших фигур.
Если экспонировать линии шириной 0.5 мкм и 2 мкм в одинаковых условиях, то первая из них проявится лишь частично, что невозможно исправить даже ценой перепроявления второй линии. Линия шириной 0.5 мкм требует примерно вдвое большей дозы, чем 2 мкм линия, если необходимо соблюсти одинаковую величину ухода размеров элементов и степень утоньшения неэкспонированных областей резиста. Внутренний эффект близости обусловлен снижением вклада в экспозицию обратнорассеянных из глубины подложки электронов и меньшим поглощением резистом энергии впередрассеянных электронов, поскольку их энергия еще велика. Если энергия электронного пучка мала (1-10 кэВ), то экспонирование ведется преимущественно впередрассеянными электронами и размытие изображения минимально, но при высоких энергиях доминирует экспонирование обратнорассеянными электронами.
Если подложка изготовлена не из кремния или на кремний нанесены пленки тяжелых металлов, например, золота или вольфрама, то экспозиция окрестности пятна увеличивается. Это объясняется большим коэффициентом обратного рассеяния электронов, присущим подложкам с большей атомной массой. Соответственно, увеличивается доза, полученная резистом (кажущееся увеличение чувствительности), и частично компенсируется внутренний эффект близости. В резисте при дозе, вдвое большей нормальной используя эффекты обратного рассеяния, можно получить профили с отрицательным наклоном, пригодные для взрывной литографии.
Для компенсации внутреннего эффекта близости должна быть задана избыточная доза (и, следовательно, большее время экспонирования). Чем толще резист, тем больше доза, необходимая для уменьшения ухода размеров (возникающего при попытке скомпенсировать недоэкспонирование перепроявлением). Чем тоньше резист, ем слабее внутренний эффект близости, что наблюдается, например, в многослойных резистах.
Другой вид эффекта близости - взаимный - заключается в экспонировании ближайшими соседями друг друга и пространства между ними. Неэкспонированные области между линиями засвечиваются обратнорассеянными электронами. Взаимный эффект близости вызывает утоньшение непосредственно неэкспонированных областей позитивных резистов. В негативных резистах неэкспонированные области заполняются остатками резиста.
Особенности ЭЛ-экспонирования электронами высокой энергии (50-100 кэВ) обусловлены главным образом боковым размытием распределения обратнорассеянных электронов на границе раздела резиста и кремниевой подложки. В частности, это приводит к тому, что не подлежащий экспонированию малый островок внутри большой экспонируемой области все равно подвергается сильному фоновому экспонированию обратнорассеянными электронами из окружающей области. Фоновое экспонирование приводит к утоньшению резистной пленки в этих островках и в конечном итоге к их исчезновению (вымыванию). Отношение величины фоновой экспозиции в неэкспонированном острове выражается как hе/(he+1) в соответствии с принципом взаимности, введенным Чангом. Здесь he - отношение вкладов обратно- и впередрассеянных электронов в энергию, поглощенную резистом. При he=1 значение hе/(he+1) составляет 0.5, т.е. величина энергии, поглощенной в малых неэкспонированных областях, вдвое меньше, чем в больших экспонированных. Величина hе/(he+1) зависит от ускоряющего напряжения, поскольку от него зависит he, однако эта связь еще недостаточно хорошо исследована.