Смекни!
smekni.com

Проектирование электродвигателя асинхронного с короткозамкнутым ротором мощностью 37 кВт (стр. 13 из 14)

В расчёте на прочность принимаем коэффициент перегрузки

[2, с. 239].

Напряжение на свободном конце вала в сечении А:

,

где

– изгибающий момент;
;

–момент сопротивления при изгибе;

Окончательно:

;

;

.

Напряжение на свободном конце вала в сечении B:

,

где

– изгибающий момент;
;

–момент сопротивления при изгибе;
.

Окончательно:

;

;

.

Напряжение на свободном конце вала в сечении C:

,
;

–момент сопротивления при изгибе;
.

Окончательно:

;

;

.

Напряжение на свободном конце вала в сечении D:

,

где

– изгибающий момент;
;

–момент сопротивления при изгибе;
.

;

;

.

Напряжения во всех сечениях не превышают предела текучести

для стали марки 45.

Выбор подшипников.

Для определения радиальной нагрузки на подшипники

и
будем исходить из наихудшего случая.

.

Приведённая динамическая нагрузка равна:

,

где

– коэффициент учитывающий характер нагрузки двигателя.

;

.

Динамическая грузоподъёмность:

,

где

– требуемый срок службы.

;

.

Выбираем шарикоподшипники радиальные однорядные по ГОСТ 8339-75.

ОПОРА A:

Тип
213 65 120 23 44000 5000

ОПОРА В:

Тип
313 65 140 35 71300 4000

2. Моделирование двигателя

Моделирование прямого пуска спроектированного двигателя выполняется на холостом ходу с последующей нагрузкой после выхода на установившийся режим (через ) номинальным моментом (Mном=119,702 Н·м).

Моделирование выполняется в среде ПМК МИК-АЛ с учетом вышеуказанных замечаний без учета эффекта вытеснения тока с постоянными параметрами схемы замещения машины в двух вариантах:

– для параметров номинального режима;

– для параметров пускового режима.

Текст программы в ПМК МИК-АЛ для номинального режима:

$ВВОД

$УРАВН(Т)

{* Параметры НОМИНАЛЬНОГО режима *}

u:=537.4; P:=1; Rs:=0.253; Rrw:=0.191; Wk:=0;

Lm:=0.1223; Ls:=0.12507; Lr:=0.12588; J:=1.5; Mc:=0;

{* Питающие напряжения *}

Usa=N#sin_t(u:ПАР=1,314.15926,0.0);

Usb=N#sin_t(u:ПАР=1,314.15926,4.1888);

Usc=N#sin_t(u:ПАР=1,314.15926,2.0944);

Usal1=(-0.4082483)*(Usb+Usc)+0.8164967*Usa;

Usbet1=0.7071068*(Usb-Usc);

{*Преоразование в произвольную систему координат*}

FI'=P*Wk;

Usu=Usal1*N#cos(FI)+Usbet1*N#sin(FI);

Usv=-Usal1*N#sin(FI)+Usbet1*N#cos(FI);

{* Потокосцепления статора и ротора *}

Fsu'=Usu-Isu*Rs+P*Wk*Fsv;

Fsv'=Usv-Isv*Rs-P*Wk*Fsu;

Fru'=0-Iru*Rrw+Frv*P*(Wk-W);

Frv'=0-Irv*Rrw-Fru*P*(Wk-W);

{* Токи статора и ротора *}

{* СЛАУ *}

СЛАУ: Isu,Iru;

Ls*Isu+Lm*Iru=Fsu;

Lr*Iru+Lm*Isu=Fru;

СЛАУ: Isv,Irv;

Ls*Isv+Lm*Irv=Fsv;

Lr*Irv+Lm*Isv=Frv;

{* Электромагнитный момент и скорость *}

M=P*(Fsu*Isv-Fsv*Isu);

W'=(M-Mc)/J;

IstA=Isu/1.73;

КОНЕЦ

* Задание на эксперимент *

ИНТ RKT4