Смекни!
smekni.com

Расчет вакуум-выпарной установки по производству томатной пасты (стр. 8 из 9)

6. ВЫБОР ОБОРУДОВАНИЯ

Сведем исходные и рассчитанные данные о вакуум-выпарной установке в табл. 18.

Таблица 18

Характеристики вакуум-выпарной установки

Наименование Символ Размерность
Давление греющего пара Р1 0,120МПа
Р2 0,084 МПа
Р3 0,047 МПа
Давление в барометрическом конденсаторе
0,011 МПа
Температура греющего пара tгр1 105 оС
tгр2 95 оС
tгр3 80 оС
Температура в барометрическом конденсаторе tбк
50 оС
Высота кипятильных труб H 4 м
Высота барометрической трубы Hбк 10 м
Количество корпусов в установке n 3 шт

Исходя из этих данных, принимаем трехкорпусную вакуум-выпарную установку марки ВНИИКОП.

Для поддержания в установке давления ниже атмосферного принимаем вакуум насос марки ВВН-3.

ВЫВОДЫ

Полученные расчетные данные соответствуют известным теоретическим зависимостям изменению содержания сухих веществ в томатной пасте при процессе выпаривание в вакууме. Выполненные расчеты соответствуют выданному заданию на курсовой проект.

Рассмотрим некоторые возможности модернизации и интенсификации производства томатной пасты, которые могут быть реализованы благодаря современным технологиям машиностроения, которые находят применение в пищевой промышленности.

Одним из основных недостатков производства плодоовощных паст является существенна потеря биологически активных веществ при тепловой обработке сырья, особенно при концентрировании, длительность которого зависит от вида готового продукта и может составлять от 60 до 300 мин. При этом потери витамина С достигают 30-70%. Перспективным способом интенсификации процессов выпаривания пастоподобных продуктов из плодоовощного сырья является использование пленочного течения жидких продуктов под действием силы тяжести, центрированных сил и сопутствующего парового потока, которое имеет место в роторных пленочных аппаратах. Использование этих аппаратов дает возможность значительно сократить длительность термообработки продуктов, снизить потери биологически активных веществ, проводить их активную гомогенизацию, уменьшить габариты оборудования и эксплуатационных затраты [5].

При активном развитии в современном мире электротехнического оборудования имеет практическую целесообразность использование установки для выпаривания томатопродуктов облучением СВЧ диапазона. Эта технология позволяет значительно снизит энергозатраты - энергоемкость процесса снижается в 1,6 - 1,8 раз по сравнению с традиционной технологией [9, 23].

Рис. 7. Перистальтический насос производства научно-производствен-ной фирмы "ФЛАЙТ-М"

Для лучшего поддержания вакуума можно предложить использование перистальтического насоса. Насосы такого вида являются новинкой на рынке оборудования для пищевой промышленности [17].Принцип действия перистальтического насоса заключается в следующем: при вращении ротора специальный башмак полностью пережимает шланг, расположенный по окружности внутри корпуса, и выдавливает рабочую среду в напорную линию. За башмаком шланг восстанавливает свою форму и обеспечивает самовсасывание.

Преимущества такого насоса:

· Надежность, простота эксплуатации;

· Единственная изнашивающаяся деталь - шланг - заменяется без демонтажа
насоса через 1000 - 2000 часов работы в зависимости от свойств
перекачиваемой среды;

· Гладкая проточная часть, отсутствуют клапаны, карманы. Нет контакта
перекачиваемой среды с движущимися металлическими частями;

· Не разрушается структура перекачиваемой среды;

· Абсолютно герметичен, отсутствуют уплотнения;

· Возможность реверсивной работы. Самоочистка насоса изменением
направления вращения;

· Постоянная подача;

· Возможность работы "всухую", т.е. необязательно наличие жидкости в
проточной части;

· Возможна прокачка газожидкостных смесей;

· Самовсасывание до 9 м вод.ст. без предварительной заливки;

· Всасывание разлитой жидкости с горизонтальных поверхностей;

· Частота вращения - 10-75 оборотов в минуту.

Так же в настоящее время научно доказано, что для повышения качества концентрированных томатных продуктов в процессе их производства является целесообразной их тепловая обработка в отваре шиповника, которая способствует стабилизации цвета конечного продукта и сохранению биологически активных веществ. Проведенные эксперименты свидетельствуют, что оптимальным способом предварительной обработки томатов с максимальным сохранением β-каротина является их бланширование в водном растворе с массовой долей шиповника 4% при температуре 93-95оС в течение 17-20 с [10].

При разработке современного высокотехнологического оборудования для пищевой промышленности стандартом является использование деталей и узлов из нержавеющей стали шлифованной по высокому классу, которое обеспечивает качество и продолжительную работу установки без мойки [16]. Рекомендую учесть эту возможность при плановой модернизации производства. Для предохранения корпуса от коррозии следует применять антикоррозионные лаковые покрытия или включения ингибиторов в материал корпуса при его изготовлении.

Для улучшения отдачи тепла от теплоносителя к продукту в качестве материала для кипятильных трубок целесообразно использовать стали марок обладающих наилучшей теплопроводностью.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Аминов М.С. Процессы и аппараты пищевых производств / М.С. Аминов и др. — М.: Колос, 1999. — 504с.

2. Баранцев В.И. Сборник задач по процессам и аппаратам пищевых производств /
В.И. Баранцев. — М.: Агропромиздат, 1985. —136 с.

3. Горбатюк В.И. Процессы и аппараты пищевых производств / В.И. Горбатюк. — М: Колос, 1999. — 335 c.

4. Кавецкий Г.Д. Процессы и аппараты пищевой технологии / Г.Д. Кавецкий,
Б.В. Васильев. — М.: Колос, 2000. — 551 с.

5. Кіптела Л.В. Наукове обґрунтування процесів і обладнання виробництва харчових напівфабрикатів з нетрадиційної плодоовочевої сировини: Автореф. дис... д-ра техн. наук: 05.18.12 / Л.В. Кіптела; Харк. держ. ун-т харчування та торгівлі. — Х., 2005 — 34 с.

6. Липатов Н.Н. Процессы и аппараты пищевых производств / Н.Н. Липатов. — М.: Экономика, 1987. — 272с.

7. Лонцин М. Основные процессы пищевых производств: Пер. с англ. / М. Лонцин,
Р. Мерсон. — М.: Легкая и пищевая промышленность, 1983. — 384 с.

8. Машины и аппараты пищевых производств: В 2 кн. / С.Т. Антипов, И.Т. Кретов, А.Н. Остриков и др.; Под ред. В.А. Панфилова. — М. : Высш. шк., 2001. — Кн. 1. — 2001. — 703 с.

9. Могилевский Ф.Е. К расчету и конструированию аппарата выпаривания фосфорной кислоты энергией поля сверхвысокой частоты / Ф.Е. Могилевской, А.Л. Шаталов // Химическое и нефтегазовое машиностроение. 2006. №8. С.10—12. [Режим доступа: http://www.himnef.ru/arhiv/list.html]

10. Ольховська В.С. Вдосконалення якості концентрованих томатопродуктів в процесі їх виробництва: автореф. дис... канд. техн. наук: 05.18.15 / В.С. Ольховська; Харк. держ. ун-т харчування та торгівлі. — Х., 2009. — 18 с.

11. Основные процессы и аппараты химической технологи: Пособие по проектированию / Г.С. Борисов, В.П. Брыков, Ю.И. Дытнерский и др..; под ред. Ю.И. Дытнерского. — М.: Химия, 1991. — 496 с.

12. Павлов К.Ф. Примеры и задачи по курсу процессов и аппаратов / К.Ф. Павлов, П.Г. Романков, А.А. Носков. — Л.: Химия, 1976. — 552 с.

13. Плаксин Ю. М. Процессы и аппараты пищевых производств / Ю. М. Плаксин,
Н. Н. Малахов, В. А. Ларин. — М.: КолосС, 2007. — 760 с.

14. Проектирование процессов и аппаратов пи­щевых производств / Под ред.
В. Н. Стабникова. — Киев: Вища школа, 1982. — 199 с.

15. Расчеты и задачи по процессам и аппаратам пищевых производств / Под. ред.
С.М. Гребенюка.— М.: Агропромиздат, 1987. — 304 с.

16. Сайт научно-производственной фирмы "ФЛАЙТ-М": Оборудование для консервной промышленности [Режим доступа: http://www.flight-m.ru/vvu_soky.html]

17. Сайт научно-производственной фирмы "ФЛАЙТ-М": Тематические статьи: "Перистальтический насос – новинка для российского рынка" [Режим доступа: http://www.flight-m.ru/staty_1.html]

18. Сенеш Э. Процессы выпаривания в пищевых производствах: Пер. с венгерского /
Э. Сенеш, Н. Надабан. — М.:Пищевая промышленность, 1969. — 312 с.

19. Справочник химика. — М.-Л., 1966. — Т. V. — 974 с.