ВВЕДЕНИЕ
Быстрорастущие потребности современного общества требуют широкомасштабного, тотального использования новейших технологий в различных отраслях экономики, так называемого Hi-Tec(HighTechnogy). Разработка современных систем автоматизации технологического процесса производства является одной из актуальнейших задач развития экономики любого государства.
Крупнейший специалист в области информатики академик Е.П.Велихов в одной из своих статей высказал гениальную по своей простоте мысль: «Тот, кто умеет делать компьютеры, владеет миром». В России и странах СНГ развитие микроэлектроники в настоящее время находится в кризисном состоянии. В силу объективных исторических обстоятельств конца 90-х годов переход на производство субмикронных интегральных микросхем не был освоен, что привело к катастрофическому отставанию от мировой техники.
Все разнообразные средства цифровой техники: персональные компьютеры, микропроцессорные системы измерений и автоматизация технологических процессов, цифровая связь, телевидение, бытовая техника и т.д. строятся на единой элементной базе, в состав которой входят чрезвычайно разные по сложности микросхемы – от логических элементов, выполняющих простейшие операции, до сложнейших программируемых кристаллов, содержащих миллионы логических элементов.
С появлением микропроцессоров и СБИС с программируемой структурой произошло качественное изменение подхода к методам проектирования и изготовления средств автоматики.
Микропроцессор способен выполнять команды, входящие в его систему команд. Меняя последовательность команд (программу), можно решать различные задачи на одном и том же микропроцессоре. Иначе говоря, в этом случае задачи структура аппаратных средств не связана с характером решаемой задачи. Это обеспечивает микропроцессорам массовое производство с соответствующим снижением стоимости.
Данная работа посвящена разработке системы климат-контроля в квартирах и офисах, предусмотренной в так называемых «интеллектуальных» зданиях, в которых помимо нее предусмотрены:
- автономное питание от дизель-генераторной установки и солнечных батарей;
- системы охранной безопасности, включая пожарную, и блокировки лифтов;
- системы видеонаблюдения;
- системы телекоммуникации – интернет, спутниковая связь и TV.
1 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
1.1 Этапы разработки системы
1.1.1 Задачи и принципы управления.
Задача управления – изменять протекающие в объекте управления процессы посредством соответствующих команд для достижения поставленной цели.
Фундаментальными принципами управления являются:
- принцип разомкнутого управления;
- принцип компенсации – управление по возмущению;
- принцип обратной связи.
Таким образом, САУ – это система, стремящаяся сохранить в допустимых пределах рассогласование (ошибку) ε(t) между требуемыми х(t) и действительными у(t) значениями управляемых переменных с помощью их сравнения на основе принципа ОС и использования получаемых при этом сигналов управления.
Система, в которой входной сигнал х(t) – известная функция (детерминированный сигнал) на всем промежутке управления, называется системой программного управления.
Система, в которой задающий входной сигнал х(t) =const, называется системой стабилизации.
Система, в которой задающий входной сигнал x(t)– случайная функция, называется следящей системой. Система, управляющая только одной выходной величиной, называются одномерной. Одномерные системы могут быть системами программного управления, системами стабилизации и следящими системами.
Кроме того, на практике используются:
- системы с поиском экстремума показателя качества;
- системы оптимального управления;
- адаптивные системы.
1.1.2 Классификация САУ.
Системы автомаического управления (САУ) можно классифицировать по классам и принципам действия.
По классам дифференциальных уравнений:
Линейными системами называются систмы, описываемые линейными дифференциальными уравнениями, в противном случае система входит в класс нелинейных. Линейные и нелинейные дискретные системы описываются соответсвеннно линейными и нелинейными разностными уравнениями или системами разностных уравнений.
Линейные и нелинейные стационарные системы описываются дифференциальными уравнениями с постоянымикоэффициентами, а нестационарные системы с переменными коэффициентами.
Сосредоточенные системыили системы со средоточенными параметрами, описываются обыкновенными дифференциальными уравнениями.
Распределенныесистемы или системы с распределенными параметрами, описываются дифференциальными уравнениями в частных производных.
Существуют два закона управления: по отклонению выходной велины и по возмущению.
САУ по отклонению – принцип И.И.Ползунова, предложенная им в 1765г. В настоящее время используется в 90% промышленных САУ.
Достоинством САУ по отклонению является то, что она компенсирует влияние любого возмущающего воздействия, которое вызвало изменение значения ее выходного сигнала у от заданного значения. Это изменение фиксирует датчик и через цепь отрицательной обратной связи, сигнал контролируемого параметра поступает на вход сравнивающего устрйства, которое, в свою очередь, вырабатывает сигнал отклонения ε = х - хос , поступающего на регулятор (рисунок 1.1). Недостаток состоит в том, что сначала должно появиться отклонение ε выходного сигнала у (параметра) от заданного ззначения и только затем регулятор компенсирует возмущающе воздействие.
САУ по возмущению – принцип Ж.Понселе, предложеннй им в 1830г. Если f возмущающее действие на объект, его измеряют и подают на регулятор для сравнения с заданным значением и выработки управляющего сигнала, изменяющего значение входного сигнала (рисунок 1.2).
Рисунок 1.2 - Структурная схема САУ по возмущению
При таком принципе управления изменение возмущающего воздействия компенсируется регулятором до того, как оно нарушит технологический режим работы объекта. Однако есть существенный недостаток – неспособность компенсировать влияние других возмущающих воздействий.
САУ по возмущению является разомкнутой, т.е. без обратной связи по выходному сигналу.
Комбинированные САУ совмещают оба закона управления и лишены многих недостатков рассмотренных схем.
По закону изменения выходного сигнала задатчика различают САУ стабилизации, программные и следящие.
По закону изменения выходного сигнала регулятораразличают САУ дискретные (двух, трехпозиционные) и непрерывные (аналоговые).
Двухпозиционные (вкл. – выкл.) системы надежны (холодильные установки), дешевы, но мала точность регулирования.
Трехпозиционные (больше-норма-меньше) системы обладают качеством выше, но надежность мала.
В аналоговых системах выходной сигнал регулятора непрерывно изменяется во времени в определенном стандартизированном диапазоне.
1.1.3 Основные элементы автоматики.
Элементами автоматики называются устройства, выполняющие определенные функции преобразования сигнала в системах автоматического управления и контроля. Элементы автоматики могут быть соединены электрическими, механическими и другими связями, а на чертежах изображают в виде кинематических, электрических, гидравлических и
пневматических схем.
Каждый элемент в системе выполняет определенную функцию, которая заключается в получении, преобразовании и передаче информации в виде сигналов.
По назначению элементы автоматики делятся на: датчики, регуляторы, усилители, стабилизаторы, реле, распределители, двигатели и т.д.
Датчик – устройство, предназначенное для преобразования информации, поступающей на его вход в виде некоторой физической величины, на выходе в другую физическую величину, более удобную для воздействия на последующие элементы.
Основной характеристикой датчика является зависимость выходной величины у от входной х, т.е. у = f(x) или просто выходной характеристикой.
Различают два вида датчиков: параметрические, в которых изменение контролируемой величины сопровождается соответствующим изменением параметра электрической цепи (активного, индуктивного и емкостного сопротивления) и наличие источника питания и генераторные, в которых изменение контролируемой величины сопровождается соответствующим изменением ЭДС на выходе.
В зависимости от вида используемой энергии различают механические, тепловые, оптические и другие типы датчиков.
Основной характеристикой элементов является зависимость выходной величины у от входной х, т.е. у = f(x) или просто выходной характеристикой, помимо которой существуют частотные и временные характеристики.
Реле - элемент автоматики, в котором при достижении входной величины х определенного значения выходная величина у изменяется скачком. Существуют различные типы реле, но основными являются электромеханические (электромагнитные, магнитоэлектрические, электродинамические и т.д.), в которых изменение входной электрической величины вызывает замыкание или размыкание контактов. Бывают бесконтактные магнитные реле (герконы) и бесконтактные реле электронного типа (триггеры).
Распределитель (мультиплексор) – элемент автоматики, осуществляющий поочередное подключение одной входной величины к одному входу других цепей. Распределители используются при необходимости управления несколькими объектами от одного и того же управляющего органа.
Исполнительные устройства- это электромагниты с втяжным и поворотным якорями, электромагнитные муфты, а также электродвигатели.
Используя выходную характеристику элемента y = f(x), можно получить коэффициент преобразования или коэффициент передачи, представляющий собой отношение выходной величины у к входной х