Отжиг на зернистый перлит проводят с целью улучшить обрабатываемость резанием за счет снижения твердости при переводе пластинчатого перлита в зернистый. Такой отжиг применяют для эвтектоидной и заэвтектоидных сталей (при отсутствии сетки цементита).
Отжиг проводят по одному из следующих режимов:
1. Нагрев на 20-300 выше А1, выдержка 3-5 часов, медленное охлаждение
2. Нагрев до тех же температур с небольшой выдержкой, охлаждение до 6000, снова нагрев до 740-7500 и снова охлаждение до 6000. Такие циклы нагрева и подстуживания повторяют 2-4 раза, т.е. проводят как бы покачивание температуры стали около А1. Поэтому такой отжиг называют еще маятником отжигом. Графически режим маятникового отжига представлен на рис.12. Общая продолжительность по второму режиму меньше, чем по первому
Почему при таком отжиге цементит изменяет форму от пластинки до сферы? Представим себе пластинку цементита в аустените. По краям этой пластинки радиус кривизны мал (0,5 толщины пластины), а по плоскости бесконечно большой. Там, где радиус кривизны мал, углерод легче переходит из цементита в аустенит, т.е. концентрация углерода у краев пластины будет повышаться. За счет диффузии концентрация углерода в аустените выравнивается атомы углерода будут переходить от края пластины к плоской части и там выделяться в виде цементита. Процесс идет пока вся пластина не превратится в сферу.
Отжиг рекристаллизационный применяют для снижения прочности, твердости, повышения пластичности и устранения вытянутости зерен после холодной пластической деформации (например, промежуточные отжиги при волочении проволоки). Такому отжигу подвергают малоуглеродистые стали, так как высокоуглеродистые стали в холодном состоянии деформируются плохо и их такой обработке практически не подвергают.
Нагрев при этом отжиге проводят ниже температуры А1 до 600-7000 с последующим охлаждением в печи или на воздухе. При этом временное сопротивление разрыву (высокое после деформации) снижается, а пластичность растет. Схема изменения формы зерен в процессе холодной пластической деформации и последующего рекристаллизационного отжига приведена на рис.13.
2.3. Нормализация стали
Нормализация заключается в нагреве стали на 30-500 выше критических температур А3 и Асм(см.рис.3) с последующим охлаждением на воздухе.
Цель нормализации доэвтектоидных конструкционных сталей несколько повысить прочность (по сравнению с прочностью после отжига) за счет измельчения структурных составляющих (феррита и перлита).
Цель нормализации заэвтектоидных инструментальных сталей - устранить цементитную сетку по границам перлитных зерен и тем самым предотвратить повышенную хрупкость стали при последующей закалке. Структура таких сталей после охлаждения на воздухе из аустенитной области (выше АC3) получается сорбит (см. рис. 14).
2.4. Закалка стали
Закалка - вид термической обработки состоящий в нагреве стали до определенных температур (доэвтектоидных на 30-400 выше А3, заэвтектоидных на 30-400 выше А1), выдержке и быстром охлаждении, со скоростью более верхней критической.
Цель закалки - повысить твердость, прочность, износоустойчивость.
Скорость охлаждения при закалке обычно задают охлаждающей средой (вода, масло, специальные среды). Верхняя критическая скорость закалки сильно зависит от содержания углерода (см.рис.1.5.) и легирующих элементов. Малоуглеродистые стали (<0,25%С) обычно закалке не подвергаются, так как Vвкз у них настолько велика, что не достигается даже при охлаждении в воде. Изменение структуры углеродистых сталей при закалке представлено в табл.1.
Таблица 1
Изменение структуры стали при закалке
Марки стали | Структура до закалки | Структура при нагреве | Структура после охлаждения |
15-25 | Ф+П | А | С или Т |
30-60 | Ф+П | А | М |
65-У8 | Ф+П, П | А | М+Аост. |
У9-У13 | С (Ф+Ц) | А+Ц | М+Аост.+Ц |
Используются несколько способов закалки, которые классифицируются по методу охлаждения.
Закалка в одном охладителе (воде или масле)
Наиболее простой и распространенный способ. Однако, некоторые стали при охлаждении в воде склонны к возникновению трещин. При охлаждении в масле скорость охлаждения меньше, но многие стали при таком охлаждении не закаливаются (скорость охлаждения меньше Vвкз и мартенсит не образуется).
Закалка в двух охладителях (через воду в масло)
При этом методе в верхнем интервале температур скорость охлаждения велика, но сталь достаточно пластична и значительных напряжений не возникает. В области же мартенситного превращения (ниже 3000) скорость охлаждения при переносе детали в масло значительно меньше, что практически исключает образование трещин. Твердость при таком методе закалки такая же, как при закалке в воде.
Ступенчатая закалка заключается в том, что после нагрева детали переносят в печь-ванну с расплавом щелочей (обычно КОН+NaOH). Нагретую до температуры немного выше начала образования мартенсита (350-4000), выдерживают небольшое время для выравнивания температуры по сечению, а затем охлаждают в масле или на воздухе.
Твердость после такой закалки такая же, как и в предыдущих способах, но напряжения и вероятность образования трещин еще меньше.
Ступенчатая закалка применяется только для мелких изделий (до 10мм) из углеродистых сталей. Для более крупных деталей ее не применяют, так как в расплаве щелочей скорость охлаждения внутри детали мала.
Для легированных сталей, обладающих высокой устойчивостью переохлажденного аустенита, такую закалку применять нецелесообразно, так как они обычно хорошо закаливаются в масле, которое достаточно медленно охлаждает при температурах образования мартенсита.
Изотермическая закалка проводится так же как и ступенчатая, но в расплаве щелочей детали выдерживают более длительное время (до полного распада аустенита на бейнит). При этом существенных напряжений не возникает, но твердость получается ниже, чем при других способах закалки. Преимуществом этого способа является то, что после него не требуется отпуска. Изотермическая закалка обычно применяется для деталей сложной формы, склонных к деформациям и образованию трещин.
Все рассмотренные способы закалки показаны на диаграмме распада переохлажденного аустенита на рис.16.
Закалка является наиболее ответственной операцией термической обработки, так как проводится в конце технологического цикла изготовления детали или инструмента. Возможные дефекты при закалке, пути их предупреждения или исправления указаны в табл.2.
2.5. Прокаливаемость и закаливаемость стали
Прокаливаемость характеризует способность стали закаливаться на определенную глубину. При охлаждении в процессе закалки по сечению детали скорость охлаждения будет различна - чем дальше от поверхности тем она меньше. Поэтому и структура по сечению детали может быть различной (М, М+Т, Т, С, Ф+П).
Прокаливаемость - расстояние от поверхности до того места, где в структуре 50% мартенсита и 50% тростита (полумартенситная зона). Прокаливаемость выражается в мм и зависит от состава стали, а точнее от величины верхней критической скорости закалки. С увеличением содержания углерода и легирующих элементов, верхняя критическая скорость закалки уменьшается и глубина прокаливаемости увеличивается. Прокаливаемость характеризуют также критическим диаметром закалки. Это такой диаметр прутка стали в центре которого при охлаждении в воде получается полумартенситная зона. Естественно, что критический диаметр закалки в 2 раза больше прокаливаемости.
Прокаливаемость важнейшая характеристика стали, определяющая выбор марки стали в зависимости от размеров закаливаемой заготовки. Чем больше размер заготовки, тем более легированная сталь должна быть применена.
Закаливаемость стали характеризует твердость правильно закаленной стали и измеряется в единицах твердости. Чем больше содержание в стали углерода, тем больше искажения решетки мартенсита и выше твердость. Легирующие элементы на закаливаемость влияют слабо.
Закаливаемость и прокаливаемость сталей определяют опытным путем. Значения этих характеристик для различных сталей приведены в справочниках.
Таблица 2
Дефекты закалки стали и пути их исправления
Вид дефекта | Причина | Способ исправления |
Недостаточная твердость | 1.Нагрев доэвтектоидных сталей ниже А3.В структуре остается феррит2.Нагрев заэвтектоидных сталей выше АсмВ структуре больше Аост.и отсутствует цементит3.Недостаточная скорость охлажденияВ структуре присутствует тростит | Повторная закалкаПовторная закалка Сменить охладитель или способ закалкиУвеличить скорость охлаждения |
Трещины | Чрезмерно быстрое охлаждение в мартенситном интервале | Сменить охладитель или способ закалки. Уменьшить скорость охлаждения |
Повышенная хрупкость | Перегрев доэвтектоидных сталей, сильный рост зерна. Наличие в исходной структуре заэвтектоидной стали сетки цементита | Повторная закалкаПеред закалкой провести нормализацию |
Сильное обезуглераживание и окисление поверхности | Завышена продолжительность выдержки при нагреве | Уменьшить выдержку до требуемой |
2.6. Обработка стали холодом