Смекни!
smekni.com

Основы термической обработки сталей (стр. 1 из 7)

Уральский государственный лесотехнический университет

Кафедра технологии металлов

Блюм Э.Э., Потехин Б.А., Резников В.Г.

.

Основы термической обработки сталей
(конспект лекций)
для самостоятельной работы студентов очного и заочного факультетов

.

1. Превращения при нагреве и охлаждении стали

1.1. Кристаллическое строение металлов

Металлы и сплавы тела кристаллические - атомы в них расположены в определенном порядке в пространстве. Порядок в расположении атомов в пространстве называют кристаллической решеткой.

В чистых металлах, т.е. при наличии атомов одного элемента, возможно 14 вариантов расположения атомов. Это обусловлено тем, что в кристалле каждый атом должен иметь одинаковое количество атомов-соседей, расположенных от него на одинаковом расстоянии.

В химических соединениях, т.е. при наличии атомов различных элементов, число возможных комбинаций в расположении атомов (типов решеток) становится бесконечно большим.Подавляющее большинство металлов и сплавов имеют сравнительно простые кристаллические решетки (см. рис. 1)

Наибольший интерес представляет строение железа и его сплавов (стали и чугуны)

Железо ниже температуры 9110С имеет кубическую объемно-центрированную кристаллическую решетку (ОЦК) и называется aFe. Такое же строение могут иметь некоторые другие металлы (Ti, V, W, Mo, Cr, Mn).

При температурах 911-13900С железо имеет кубическую гранецентрированную кристаллическую решетку (ГЦК) и называется gFe. Такая же решетка имеется у некоторых других металлов (Cu, Al, Pb).

Кратчайшее расстояние между центрами атомов в кристаллической решетке называется параметром решетки (а). Параметры измеряют в ангетремах (А) или килоиксах (КХ)

1А = 1*10-8 см

1 КХ = 1,00202А

Параметры решетки соизмеримы с радиусом атомов. Например, у aFe а=2,8608А, Rат=1,26А,у gFe а=3,649А, Rат=1,29А

1.2. Аллотропия металлов

Аллотропия - способность некоторых металлов изменять тип кристаллической решетки при изменении внешних условий (температуры и давления). Обычно каждый тип решетки устойчив в определенном интервале температур, но в некоторых случаях, например при быстром охлаждении может одновременно существовать несколько типов решеток. Различные модификации (типы решеток) одного и того же металла обозначают греческими буквами: a,b,g, d и т.д. Буквой обозначается самая низкотемпературная модификация.

Например, при нагреве железа происходят следующие превращения:

aFe®bFe®gFe®dFe®Ж

Признаки аллотропического превращения следующие:

1. Изменяется тип кристаллической решетки;

2. Наблюдается тепловой эффект;

3. Свойства изменяются скачком

Таким образом в железе наблюдается два аллотропических превращения (при температурах 911 и 13900).

С изменением типа кристаллической решетки железа резко изменяется растворимость в нем углерода. Так максимальная растворимость углерода в aFe 0,02% (при t=7230), а в gFe 2,14% (при t=11300). Это черезвычайно важно для понимания процессов происходящих при термической обработке стали.

Аллотропия наблюдается в ряде металлов (Sn, Ti, Ni, Mn, Cr и др.).

1.3. Строение металлических сплавов

Химические элементы из которых состоит сплав называют компонентами. При взаимодействии компонентов в сплавах образуются фазы. Фаза - однородная часть сплава отделенная от других поверхностью раздела. При изучении процессов, происходящих при нагреве и охлаждении сплавов, используются диаграммы состояния, которые строят опытным путем. Диаграммой состояния называют график, который показывает фазовое состояние сплава в зависимости от температуры и химического состава. Следует иметь в виду, что диаграммы состояния построены для условий медленного нагрева или охлаждения.

В сплавах могут быть следующие типы твердых фаз: кристаллы чистых компонентов, кристаллы твердых растворов, кристаллы химических соединений.

Кристаллы чистых компонентов состоят из одинаковых атомов, расположенных в виде кристаллической решетки.

Кристаллы твердых растворов состоят из разноименных атомов, образующих общую кристаллическую решетку, тип которой такой же, как у одного из входящих компонентов. При рассмотрении в микроскоп твердые растворы выглядят, как чистые металлы, т.е. являются однофазными. В отличие от химических соединений твердые растворы существуют не при определенном соотношении компонентов, а в интервале концентраций. Поэтому они на диаграммах состояния всегда занимают определенные области. Твердые растворы, как правило, имеют невысокую твердость.

В промышленных сплавах наиболее часто встречаются два типа твердых растворов: замещения и внедрения.

В твердых растворах замещения атомы растворимого элемента занимают в кристаллической решетке места атомов растворителя. Такие твердые растворы могут быть ограниченной и неограниченной растворимости. При неограниченной растворимости любое количество атомов одного компонента может быть заменено атомами другого компонента. Это возможно при выполнении следующих условий: у обоих компонентов одинаковый тип кристаллической решетки, сходное строение валентной электронной оболочки атомов, малое различие в размерах атомов.

Если у двух металлов с одинаковым типом кристаллической решетки диаметры атомов различаются значительно, то растворение второго компонента приводит к сильным искажениям кристаллической решетки. Когда эти искажения достигают определенной величины, решетка становится неустойчивой, что приводит к пределу растворимости.

Твердые растворы замещения всегда образуются между металлами, например, железо с Cr, Mn, Ni, W, Co.

В твердых растворах внедрения атомы растворимого элемента размещаются в междуузельных пространствах кристаллической решетки элемента растворителя. Такие твердые растворы образуются в том случае, когда диаметр атомов растворимого элемента много меньше, чем диаметр атомов элемента растворителя. Поэтому такие твердые растворы образуются между металлами и неметаллами (С,Н,О,N), имеющими малые размеры атомов. Образование таких твердых растворов приводит к некоторому искажению кристаллической решетки и к увеличению параметра решетки. Примером таких твердых растворов в стали служит феррит (твердый раствор внедрения углерода в aFe) и аустенит (твердый раствор внедрения углерода в gFe).Схемы твердых растворов замещения и внедрения показаны на рис. 2.

Следует, однако, иметь в виду, что в промышленных сплавах, например в сталях, нет в чистом виде твердых растворов замещения и внедрения. Даже простые углеродистые стали представляют собой сложные многокомпонентные сплавы, в которых образуются твердые растворы внедрения на базе твердых растворов замещения.

Химические соединения - такие фазы, которым можно приписать простые стехиометрические формулы. Они имеют обычно сложную кристаллическую решетку с упорядоченным расположением атомов, тип которой отличается от решеток входящих в них компонентов. Состав химических соединений, в отличие от тверды растворов, постоянный и не изменяется с изменением температуры. Поэтому на диаграммах состояния химические соединения показывают вертикальной прямой линией.

Свойства химических соединений всегда сильно отличаются от свойств входящих в них компонентов.

В сталях наибольший интерес представляет химическое соединение Fe3C, обладающее высокой твердостью и хрупкостью.

При рассмотрении сплавов в микроскоп видны структурные составляющие. Структурными составляющими называют участки сплава, которые выглядят одинаково (светлыми, темными, пестрыми). Структурные составляющие выявляют путем травления полированных образцов-шлифов кислотами или другими реактивами. Структурные составляющие могут состоять из одной или нескольких фаз.

Все сплавы в твердом состоянии могут состоять из следующих структурных составляющих:

1. Кристаллов твердых растворов,

2. Кристаллов химических соединений,

3. Механической смеси кристаллов различных типов (кристаллов чистых компонентов, твердых растворов и химических соединений).

При образовании механических смесей особо выделяют однородные механические смеси, которые являются самостоятельными структурными составляющими и при рассмотрении в микроскоп выглядят однородными участками.

Если однородная механическая смесь образовалась при кристаллизации из жидкого состояния, то она называется эвтектикой. Например, при кристаллизации белого чугуна содержащего 4,3%С образуется эвтектика (однородная механическая смесь состоящая из аустенита и цементита), которая имеет специальное название ледебурит.

Если однородная механическая смесь кристаллов образовалась в твердом состоянии, то она называется эвтектоидом. Например, в углеродистой стали содержащей 0,83%С при охлаждении ниже 7230 аустенит распадается на феррит и цементит. Такая однородная механическая смесь в сталях имеет специальное название - перлит.

1.4. Превращения в стали при нагреве

Термическая обработка стали состоит в нагреве до определенной температуры, выдержке и охлаждении с определенной скоростью.

При кажущейся простоте этих операций в процессе их выполнения в стали протекают сложные процессы, которые и определяют свойства после термической обработки.

На рис. 3. Показан фрагмент диаграммы Fe-C, где находятся углеродистые стали. Линии на диаграмме имеют специальные обозначения. Линия А1 (7230) показывает начало образования аустенита при нагреве, линия А3 - конец образования аустенита, линия Аст - конец растворения цементита в аустените.

После медленного охлаждения, а диаграмма и построена при медленном охлаждении, структуры стали в зависимости от содержания углерода будут различными.