Смекни!
smekni.com

Взаимосвязь и регуляция процессов (стр. 2 из 3)

ДОСТУПНОСТЬ САБСТРАТА КАК

РЕГУЛИРУЮЩИЙ ФАКТОР

Концентрация субстратов влияет на скорость реакции непосредственно или путем воздействия на активность ферментов. Уменьшение концентрации субстрата приводит к снижению скорости реакции. Когда фермент еще насыщен субстратом, это влияние проявляется исключительно через воздействие на активность ферментов. Помере снижения концентрации субстрата наступает фаза, когда фермент перестает насыщаться субстратом. С этого момента преимущественное влияние на скорость реакции оказывает непосредственно концентрация субстрата.

Аналогичным образом, но в противоположном направлении влияет на скорость химической реакции повышение концентрации субстрата.

Регуляция концентрации субстрата может осуществляться на этапе поступления его в клетку. В качестве регулятора проницаемости клеточной оболочки нередко выступают гормоны. Примером может служить один из путей воздействия гормона инсулина на скорость синтеза гликогена в печени. Инсулин, в частности, повышает проницаемость оболочек клеток печени для глюкозы, увеличивая тем самым скорость поступления глюкозы в клетки, и создает предпосылки для более энергичного синтеза гликогена.

В нормальных условиях жизнедеятельности организма большинство ферментов, участвующих в промежуточных реакциях метаболизма, не проявляет своей максимальной активности из-за отсутствия необходимого количества субстратов реакций. Учитывая это, в практике спорта применяются воздействия на скорость аэробного окисления в период восстановления дополнительным введением промежуточных продуктов цикла трикарбоновых кислот: лимонной, янтарной, яблочной.

Следует, однако, заметить, что относительное постоянство состава внутренней среды всего организма и отдельных клеток в отношении субстратов метаболических путей дает основания предполагать, что регуляция за счет изменения доступности субстрата не может изменять скорость химических реакций в широком диапазоне. По-видимому, этот механизм как основной не слишком распространен у высших животных. Однако при спортивной деятельности этот механизм регуляции может играть достаточно серьезную роль. Снижение содержания энергетических субстратов (креатин фосфата, гликогена) при работе может явиться одной из главных причин замедления скорости ресинтеза АТФ и в конечном итоге падения работоспособности. Непосредственной причиной снижения интенсивности и даже прекращения работы является понижение концентрации АТФ в мышечных волокнах, в клетках центральной нервной системы. АТФ является непосредственным энергетическим субстратом многих энергоемких химических реакций, обеспечивающих формирование двигательного импульса, работу кальциевого насоса, взаимодействие актиновых и миозиновых нитей, приводящее к укорочению мышечного волокна. Концентрация АТФ при ее понижении ниже критического для клетки уровня выступает как главный фактор регуляции скорости этих реакций.

РЕГУЛЯЦИЯ СКОРОСТИ ХИМИЧЕСКИХ РЕАКЦИЙ

ПУТЕМ ВОЗДЕЙСТВИЯ НА АКТИВНОСТЬ

ФЕРМЕНТОВ

Регуляция скорости химических реакций путем изменения активности ферментов является одним из самых главных механизмов. Если с помощью такого механизма регулируется скорость химического процесса, то воздействию подвергается только один фермент так называемый регуляторный. Как правило, это один из ферментов, катализирующий начальные реакции процесса. В случае разветвления процесса регуляторным является фермент, катализирующий первую реакцию после разветвления метаболического пути. Такой принцип регуляции предотвращает накопление промежуточных продуктов.

Активность регуляторного фермента значительно ниже активности других ферментов, обладающих своеобразной избыточной активностью. Поэтому изменение скорости регулируемой таким ферментом реакции определяет скорость всего процесса в целом.

Данный механизм регуляции является одним из наиболее быстрых и обеспечивает изменение скорости химической реакции в широком диапазоне. Он характеризуется высокой точностью ответной реакции.

Существует много факторов, могущих воздействовать на активность регуляторных ферментов. Воздействие одного из них – концентрация субстрата – уже разбиралось в предыдущем разделе.

Другим фактором может являться концентрация продукта реакции (процесса). Высокие концентрации продукта нередко оказывают ингибирующее влияние на регуляторный фермент. Это воздействие может сказываться по механизму обратной связи, т.е. путем непосредственного воздействия продукта на фермент, или путем изменения рН внутренней среды. Так, в частности, влияет на скорость гликолиза продукт этого процесса – молочная кислота. И в том, и в другом случае достигается одно и то же: предотвращение накопления продукта, предотвращение резких изменений во внутренней среде.

Имеются примеры, когда продукт реакции оказывает активирующее влияние на регуляторный фермент или сам выступает в роли катализатора, ускоряя свое образование. Так, один из предшественников ферментов белкового пищеварения трипсиноген превращается в свою активную форму – трипсин под действием энтерокиназы. Энтерокиназа обладает низкой активностью и сравнительно медленно осуществляет превращение трипсиногена в трипсин. Однако образующийся в ходе этой реакции трипсин выступает не только в качестве фермента белкового пищеварения, но и оказывает влияние на трипсиноген, быстро завершая его превращение в трипсин.

Такой механизм регуляции получил название- аутокатализ. Он используется там, где нужно быстро осуществить полное превращение субстрата в продукт.

Воздействие на активность ферментов является одним из главных механизмов регулирующего влияния гормонов на обмен веществ. Так, например, адреналин стимулирует расщепление гликогена в печени, мобилизацию жира в жировых депо путем воздействия на активность соответствующих ферментов.

РЕГУЛЯЦИЯ ОБМЕНА ВЕЩЕСТВ ПУТЕМ

ИЗМЕНЕНИЯ КОЛИЧЕСТВА ФЕРМЕНТОВ

Это сравнительно медленный механизм регуляции, для его проявления требуются часы или даже дни. Однако он характеризуется большими возможностями ответной реакции. Он позволяет организму изменять относительные количества и типы ферментов, действующих на любом участке метаболических путей в зависимости от сигналов из окружающей среды. Количество любого фермента может регулироваться на этапе его синтеза или распада. Регуляция на уровне синтеза имеет наибольшее значение.

Вещества, повышающие скорость синтеза ферментов и тем самым увеличивающие их количество в клетке, называютсяиндукторами, угнетающие синтез – репрессорами.

Индукция и репрессия синтеза ферментов осуществляется на уровне генетического аппарата клетки (ДНК или РНК) и заключается в активации или репрессии соответствующих генов, а также синтетической активности рибосом. Регуляция на уровне генетического аппарата может привести:

1) к увеличению или уменьшению количества ферментов;

2) к изменению соотношения типов имеющихся в клетке ферментов;

3) к изменению относительного содержания в ней различных вариантов данного фермента (изоферментов), которые, катализируя одну и ту же реакцию, могут различаться по своим каталитическим свойствам.

Такое регулирующее влияние на генную активность могут оказывать гормоны, высокие концентрации субстратов и продуктов метаболизма. Последние могут действовать как непосредственно, так и через изменение продукции соответствующих гормонов, т.е. путем воздействия на железы внутренней секреции. Именно такой путь регулирующего воздействия на обменные процессы лежит в основе биохимической адаптации организма под влиянием мышечной тренировки.

РЕГУЛЯЦИЯ ОБМЕНА ВЕЩЕСТВ

ЧЕРЕЗ ДОСТУПНОСТЬ КОФАКТОРА

Под кофактором понимается вещество, присутствие которого необходимо для проявления активности ферментов. В отсутствии кофактора фермент не может выполнять своей функции. Часто в качестве кофактора выступают ионы металлов. Так, ион Са++ является кофактором фермента мышечной ткани АТФ – азы.

Регуляция через доступность кофакторов является самым быстрым механизмом. Именно через изменение доступности кофакторов осуществляется в большинстве случаев быстрые нервные воздействия на обмен веществ. Так, поступление двигательного импульса в мышечное волокно приводит к освобождению ионов Са++ , в присутствии которых АТФ-аза расщепляет АТФ. В свою очередь, расщепление АТФ приводит к освобождению энергии, за счет которой осуществляется мышечное сокращение.

Различные вещества (субстраты, продукты, кофакторы), влияя на активность ферментов, вызывают так называемый аллостерический эффект. Молекулы таких метаболических регуляторов могут связываться ферментами в особом аллостерическом центре, в результате чего возникают изменения в его пространственной конфигурации. Это меняет условия взаимодействия фермента с субстратом, увеличивая или уменьшая скорость ферментативной реакции.

Конечно, описанные механизмы не исчерпывают всего многообразия регуляции обмена веществ и не отражают его сложности. В организме любой процесс, как правило, регулируется несколькими механизмами, дополняющими и даже дублирующими друг друга.

Каждый из этих механизмов в зависимости от условий может играть ведущую или второстепенную роль в регуляции какого-либо процесса.

НЕРВНАЯ И ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ

ОБМЕНА ВЕЩЕСТВ

Нервная и гормональная системы осуществляют координацию деятельности клеток и органов организма, взаимосвязь обмена веществ организма с внешней средой. В отличии от гормональной нервная система оказывает быстрые регулирующие воздействия, вызывая в клетках регулируемых органов или тканей выраженные биохимические изменения, быстро проходящие после окончания нервного воздействия. Регулирующее влияние гормональной системы развертывается значительно медленнее. Гормоны вызывают в клетках регулируемых органов и тканей сравнительно небольшие, но длительно сохраняющиеся изменения. Железы внутренней секреции организма человека вырабатывают более 50 различных гормонов. Механизмы регулирующего воздействия многих из них известны. Некоторые гормоны (например, адреналин, инсулин) действуют как активаторы или ингибиторы системы. Другие могут выступать в качестве репрессоров или индукторов в синтезе белка. Третьи влияют на скорость синтеза различных белков (чаще всего белков ферментов) непосредственно в рибосомах (АКТГ). Некоторые гормоны (инсулин, тироксин и др.) влияют на структуру клеточных мембран, изменяя их проницаемость.