Свойства | Органически связанная вода | Монослой | Мультислой |
Общее описание | Вода как общая часть неводного компонента | Вода, которая сильно взаимодействует с гидрофильными группами неводных компонентов путемвода-ион, или вода — диполь ассоциации; вода в микрокапиллярах (d < 0,1 \м) | Вода, которая примыкает к монослою и которая образует несколько слоев вокруг гидрофильных группневодного компонента. Превалируют вода—вода и вода—растворенное вещество—водородные связи |
Точка замерзания по сравнению с чистой водой | Не замерзает при -40 °С | Не замерзает при -40 °С | Большая часть не замерзает при -40 "С.Остальная часть замерзает при значительно пониженной температуре |
Способность служить растворителем | Нет | Нет | Достаточно слабая |
Молекулярная подвижность | Очень малая | Существенно меньше | Меньше |
Энтальпия парообразования по сравнению с чистой водой | Сильно увеличена | Значительно увеличена | Несколько увеличена |
Зона изотермы сорбции(рис. 10.6) | Органически связанная вода показывает практически нулевую активность и,таким образом, существует в экстремально левом конце зоны | Вода в зоне 1 изотермы состоит изнебольшого количества органической влаги с остатком монослоявлаги. Верхняя граница зоны I неявляется четкой и варьирует в зависимости от продукта и температуры | Вода в зоне 11 состоит из воды, присутствующей в зоне I, + вода добавленная или удаленная внутри зоны II(мультислойная влага). Граница зоны IIне является четкой и варьирует в зависимости от продукта и температуры |
Стабильность пищевых продуктов | Самоокисление | Оптимальная стабильность при aw = 0,2-0,3 | Если содержание воды увеличивается выше нижней части зоны II, скоростьпочти всех реакций увеличивается |
Активность воды. Изотермы сорбции
Давно известно, что существует взаимосвязь (хотя и далеко не совершенная) между влагосодержанием пищевых продуктов и их сохранностью (или порчей). Поэтому основным методом удлинения сроков хранения пищевых продуктов всегда было уменьшение содержания влаги путем концентрирования или дегидратации.
Однако часто различные пищевые продукты с одним и тем же содержанием влаги портятся по-разному. В частности, было установлено, что при этом имеет значение, насколько вода ассоциирована с неводными компонентами: вода, сильнее связанная, меньше способна поддержать процессы, разрушающие (портящие) пищевые продукты, такие как рост микроорганизмов и гидролитические химические реакции.
Чтобы учесть эти факторы, был введен термин «активность воды». Этот термин безусловно лучше характеризует влияние влаги на порчу продукта, чем просто содержание влаги. Естественно, существуют и другие факторы (такие как концентрация 02, рН, подвижность воды, тип растворенного вещества), которые в ряде случаев могут сильнее влиять на разрушение продукта. Тем не менее, водная активность хорошо коррелирует со скоростью многих разрушительных реакций, она может быть измерена и использована для оценки состояния воды в пищевых продуктах и ее причастности к химическим и биохимическим изменениям. Активность воды (aw) - это отношение давления паров воды надданным продуктом к давлению паров над чистой водой при той же температуре. Это отношение входит в основную термодинамическую формулу определения энергии связи влаги с материалом (уравнение Ребиндера):
ΔF = L = RTln
= -RT-lnawПо величине активности воды (табл. 3) выделяют: продукты с высокой влажностью (aw= 1,0-0,9); продукты с промежуточной влажностью (aw= 0,9-0,6); продукты с низкой влажностью (а = 0,6-0,0).
Таблица 3 – Активность воды (aw) в пищевых продуктах
Продукт | Влажность, % | aw | Продукт | Влажность, % | аw |
Фрукты | 90-95 | 0,97 | Мука | 16-19. | 0,80 |
Яйца | 70-80 | 0,97 | Мед | 10-15 | 0,75 |
Мясо | 60-70 | 0,97 | Карамель | 7-8 | 0,65 |
Сыр | 40 | 0,92-0,96 | Печенье | 6-9 | 0,60 |
Джем | 30-35 | 0,82-0,94 | Шоколад | 5-7 | 0,40 |
Хлеб | 40-50 | 0,95 | Сахар | 0-0,15 | 0,10 |
Кекс | 20-28 | 0,83 |
Кривые, показывающие связь между содержанием влаги (масса воды, г Н20/г СВ) в пищевом продукте с активностью воды в нем при постоянной температуре, называются изотермами сорбции. Информация, которую они дают, полезна для характеристики процессов концентрирования и дегидратации (т.к. простота или трудность удаления воды связана с aw), а также для оценки стабильности пищевого продукта. На рис. 10.5 изображена изотерма сорбции влаги для продуктов с высокой влажностью (в широкой области влагосодержания).
Рисунок 1. Изотерма сорбции влаги для продуктов с высокой влажностью
Однако, с учетом наличия связанной влаги, больший интерес представляет изотерма сорбции для области низкого содержания влаги в пищевых продуктах (рис. 1)
Рисунок 2.Изотерма сорбции влаги для области низкого содержания влаги в пищевых продуктах.
Для понимания значения изотермы сорбции полезно рассмотреть зоны I—III.
Свойства воды в продукте сильно отличаются по мере перехода от зоны I (низкие влагосодержания) к зоне III (высокая влажность). Зона I изотермы соответствует воде, наиболее сильно адсорбированной и наиболее неподвижной в пищевых продуктах. Эта вода абсорбирована, благодаря полярным вода-ион и вода-диполь взаимодействиям. Энтальпия парообразования этой воды много выше, чем чистой воды, и она не замерзает при — 40°С. Она неспособна быть растворителем, и не присутствует в значительных количествах, чтобы влиять на пластичные свойства твердого вещества; она просто является его частью.
Высоковлажный конец зоны I (граница зон I и II) соответствует монослою влаги. В целом зона I — соответствует чрезвычайно малой части всей влаги в высоковлажном пищевом продукте.
Вода в зоне II состоит из воды зоны I и добавленной воды (ресорбция) для получения воды, заключенной в зону II. Эта влага образует мультислой и взаимодействует с соседними молекулами через вода-вода—водородные связи. Энтальпия парообразования для мультислойной воды несколько больше, чем для чистой воды. Большая часть этой воды не замерзает при — 40°С, как и вода, добавленная к пищевому продукту с содержанием влаги, соответствующим границе зон I и II. Эта вода участвует в процессе растворения, действует как пластифицирующий агент и способствует набуханию твердой матрицы. Вода в зонах IIи I обычно составляет менее 5% от общей влаги в высоковлажных пищевых продуктах.
Вода в зоне III изотермы состоит из воды, которая была в зоне I и II, и добавленной для образования зоны III. В пищевом продукте эта вода наименее связана и наиболее мобильна. В гелях или клеточных системах она является физически связанной, так что ее макроскопическое течение затруднено. Во всех других отношениях эта вода имеет те же свойства, что и вода в разбавленном солевом растворе. Вода, добавленная (или удаленная) для образования зоны III, имеет энтальпию парообразования практически такую же, как чистая вода, она замерзает и является растворителем, что важно для протекания химических реакций и роста микроорганизмов. Обычная влага зоны III (не важно, свободная или удерживаемая в макромолекулярной матрице) составляет более 95% от всей влаги в высоковлажных материалах. Состояние влаги, как будет показано ниже, имеет важное значениедля стабильности пищевых продуктов.
В заключение следует отметить, что изотермы сорбции, полученные добавлением воды (ресорбция) к сухому образцу, не совпадают полностью с изотермами, полученными путем десорбции. Это явление называется гистерезисом. Изотермы сорбции влаги для многих пищевых продуктов имеют гистерезис. Величина гистерезиса, наклон кривых, точки начала и конца петли гистерезиса могут значительно изменяться в зависимости от таких факторов, как природа пищевого продукта, температура, скорость десорбции, уровень воды, удаленной при десорбции.
Как правило, изотерма абсорбции (ресорбции) нужна при исследовании гигроскопичности продуктов, а десорбции — полезна для изучения процессов высушивания.
Активность воды и стабильность пищевых продуктов
С учетом вышесказанного ясно, что стабильность пищевых продуктов и активность воды тесно связаны.
В продуктах с низкой влажностью могут происходить окисление жиров, неферментативное потемнение, потеря водорастворимых веществ (витаминов), порча, вызванная ферментами. Активность микроорганизмов здесь подавлена. В продуктах с промежуточной влажностью могут протекать разные процессы, в том числе с участием микроорганизмов. В процессах, протекающих при высокой влажности, микроорганизмам принадлежит решающая роль.
Окисление липидов начинается при низкой aw. По мере ее увеличения скорость окисления уменьшается примерно до границы зон I и II на изотерме, а затем снова увеличивается до границы зон II и III. Дальнейшее увеличение aw снова уменьшает скорость окисления. Эти изменения можно объяснить тем, что при добавлении воды к сухому материалу сначала имеет место столкновение с кислородом. Эта вода (зона I) связывает гидропероксиды, сталкивается с их продуктами распада и, таким образом, препятствует окислению. Кроме того, добавленная вода гидратирует ионы металлов, которые катализируют окисление, уменьшая их действенность.