Смекни!
smekni.com

Вода в продуктах питания (стр. 2 из 4)

Свойства Органически связанная вода Монослой Мультислой
Общее описание Вода как общая часть неводного компонента Вода, которая сильно взаимодействует с гидрофильными группами неводных компонентов путемвода-ион, или вода — диполь ассоциации; вода в микрокапиллярах (d < 0,1 &bsol;м) Вода, которая примыкает к монослою и которая образует несколько слоев вокруг гидрофильных группневодного компонента. Превалируют вода—вода и вода—растворенное вещество—водородные связи
Точка замерзания по сравнению с чистой водой Не замерзает при -40 °С Не замерзает при -40 °С Большая часть не замерзает при -40 "С.Остальная часть замерзает при значительно пониженной температуре
Способность служить растворителем Нет Нет Достаточно слабая
Молекулярная подвижность Очень малая Существенно меньше Меньше
Энтальпия парообразования по сравнению с чистой водой Сильно увеличена Значительно увеличена Несколько увеличена
Зона изотермы сорбции(рис. 10.6) Органически связанная вода показывает практически нулевую активность и,таким образом, существует в экстремально левом конце зоны Вода в зоне 1 изотермы состоит изнебольшого количества органической влаги с остатком монослоявлаги. Верхняя граница зоны I неявляется четкой и варьирует в зависимости от продукта и температуры Вода в зоне 11 состоит из воды, присутствующей в зоне I, + вода добавленная или удаленная внутри зоны II(мультислойная влага). Граница зоны IIне является четкой и варьирует в зависимости от продукта и температуры
Стабильность пищевых продуктов Самоокисление Оптимальная стабильность при aw = 0,2-0,3 Если содержание воды увеличивается выше нижней части зоны II, скоростьпочти всех реакций увеличивается

Активность воды. Изотермы сорбции

Давно известно, что существует взаимосвязь (хотя и далеко не совершенная) между влагосодержанием пищевых продуктов и их сохранно­стью (или порчей). Поэтому основным методом удлинения сроков хра­нения пищевых продуктов всегда было уменьшение содержания влаги путем концентрирования или дегидратации.

Однако часто различные пищевые продукты с одним и тем же содер­жанием влаги портятся по-разному. В частности, было установлено, что при этом имеет значение, насколько вода ассоциирована с неводными компонентами: вода, сильнее связанная, меньше способна поддержать процессы, разрушающие (портящие) пищевые продукты, такие как рост микроорганизмов и гидролитические химические реакции.

Чтобы учесть эти факторы, был введен термин «активность воды». Этот термин безусловно лучше характеризует влияние влаги на порчу про­дукта, чем просто содержание влаги. Естественно, существуют и другие факторы (такие как концентрация 02, рН, подвижность воды, тип ра­створенного вещества), которые в ряде случаев могут сильнее влиять на разрушение продукта. Тем не менее, водная активность хорошо корре­лирует со скоростью многих разрушительных реакций, она может быть измерена и использована для оценки состояния воды в пищевых про­дуктах и ее причастности к химическим и биохимическим изменениям. Активность воды (aw) - это отношение давления паров воды наддан­ным продуктом к давлению паров над чистой водой при той же темпера­туре. Это отношение входит в основную термодинамическую формулу определения энергии связи влаги с материалом (уравнение Ребиндера):

ΔF = L = RTln

= -RT-lnaw

По величине активности воды (табл. 3) выделяют: продукты с вы­сокой влажностью (aw= 1,0-0,9); продукты с промежуточной влажнос­тью (aw= 0,9-0,6); продукты с низкой влажностью (а = 0,6-0,0).

Таблица 3 – Активность воды (aw) в пищевых продуктах

Продукт Влажность, % aw Продукт Влажность, % аw
Фрукты 90-95 0,97 Мука 16-19. 0,80
Яйца 70-80 0,97 Мед 10-15 0,75
Мясо 60-70 0,97 Карамель 7-8 0,65
Сыр 40 0,92-0,96 Печенье 6-9 0,60
Джем 30-35 0,82-0,94 Шоколад 5-7 0,40
Хлеб 40-50 0,95 Сахар 0-0,15 0,10
Кекс 20-28 0,83

Кривые, показывающие связь между содержанием влаги (масса воды, г Н20/г СВ) в пищевом продукте с активностью воды в нем при постоянной температуре, называются изотермами сорбции. Информа­ция, которую они дают, полезна для характеристики процессов концен­трирования и дегидратации (т.к. простота или трудность удаления воды связана с aw), а также для оценки стабильности пищевого продукта. На рис. 10.5 изображена изотерма сорбции влаги для продуктов с высокой влажностью (в широкой области влагосодержания).

Рисунок 1. Изотерма сорбции влаги для продуктов с высокой влажностью

Однако, с учетом наличия связанной влаги, больший интерес пред­ставляет изотерма сорбции для области низкого содержания влаги в пи­щевых продуктах (рис. 1)

Рисунок 2.Изотерма сорбции влаги для области низкого содержания влаги в пищевых продуктах.

Для понимания значения изотермы сорбции полезно рассмотреть зоны I—III.

Свойства воды в продукте сильно отличаются по мере перехода от зоны I (низкие влагосодержания) к зоне III (высокая влажность). Зона I изо­термы соответствует воде, наиболее сильно адсорбированной и наибо­лее неподвижной в пищевых продуктах. Эта вода абсорбирована, благо­даря полярным вода-ион и вода-диполь взаимодействиям. Энтальпия па­рообразования этой воды много выше, чем чистой воды, и она не замер­зает при — 40°С. Она неспособна быть растворителем, и не присутствует в значительных количествах, чтобы влиять на пластичные свойства твер­дого вещества; она просто является его частью.

Высоковлажный конец зоны I (граница зон I и II) соответствует мо­нослою влаги. В целом зона I — соответствует чрезвычайно малой части всей влаги в высоковлажном пищевом продукте.

Вода в зоне II состоит из воды зоны I и добавленной воды (ресорбция) для получения воды, заключенной в зону II. Эта влага образует мультислой и взаимодействует с соседними молекулами через вода-вода—водородные связи. Энтальпия парообразования для мультислойной воды несколько больше, чем для чистой воды. Большая часть этой воды не замерзает при — 40°С, как и вода, добавленная к пищевому про­дукту с содержанием влаги, соответствующим границе зон I и II. Эта вода участвует в процессе растворения, действует как пластифицирую­щий агент и способствует набуханию твердой матрицы. Вода в зонах IIи I обычно составляет менее 5% от общей влаги в высоковлажных пищевых продуктах.

Вода в зоне III изотермы состоит из воды, которая была в зоне I и II, и добавленной для образования зоны III. В пищевом продукте эта вода наи­менее связана и наиболее мобильна. В гелях или клеточных системах она является физически связанной, так что ее макроскопическое течение зат­руднено. Во всех других отношениях эта вода имеет те же свойства, что и вода в разбавленном солевом растворе. Вода, добавленная (или удален­ная) для образования зоны III, имеет энтальпию парообразования прак­тически такую же, как чистая вода, она замерзает и является растворите­лем, что важно для протекания химических реакций и роста микроорга­низмов. Обычная влага зоны III (не важно, свободная или удерживаемая в макромолекулярной матрице) составляет более 95% от всей влаги в вы­соковлажных материалах. Состояние влаги, как будет показано ниже, имеет важное значениедля стабильности пищевых продуктов.

В заключение следует отметить, что изотермы сорбции, полученные добавлением воды (ресорбция) к сухому образцу, не совпадают полно­стью с изотермами, полученными путем десорбции. Это явление назы­вается гистерезисом. Изотермы сорбции влаги для многих пищевых продуктов имеют гистерезис. Величина гистерезиса, наклон кривых, точки начала и конца петли гистерезиса могут значительно изменяться в зависимости от таких факторов, как природа пищевого продукта, температура, ско­рость десорбции, уровень воды, удаленной при десорбции.

Как правило, изотерма абсорбции (ресорбции) нужна при исследо­вании гигроскопичности продуктов, а десорбции — полезна для изуче­ния процессов высушивания.

Активность воды и стабильность пищевых продуктов

С учетом вышесказанного ясно, что стабильность пищевых продук­тов и активность воды тесно связаны.

В продуктах с низкой влажностью могут происходить окисление жи­ров, неферментативное потемнение, потеря водорастворимых веществ (витаминов), порча, вызванная ферментами. Активность микроорганиз­мов здесь подавлена. В продуктах с промежуточной влажностью могут протекать разные процессы, в том числе с участием микроорганизмов. В процессах, протекающих при высокой влажности, микроорганизмам принадлежит решающая роль.

Окисление липидов начинается при низкой aw. По мере ее увели­чения скорость окисления уменьшается примерно до границы зон I и II на изотерме, а затем снова увеличивается до границы зон II и III. Дальнейшее увеличение aw снова уменьшает скорость окисле­ния. Эти изменения можно объяснить тем, что при добавлении воды к сухому материалу сначала имеет место столкновение с кислородом. Эта вода (зона I) связывает гидропероксиды, сталкивается с их продуктами распада и, таким образом, препятствует окислению. Кроме того, добавленная вода гидратирует ионы металлов, которые катализируют окисление, уменьшая их действенность.