Смекни!
smekni.com

Кинематический расчет привода (стр. 1 из 7)

Содержание

1. Описание конструкции проектируемого привода

2. Кинематический расчет привода

2.1 Выбор электродвигателя привода

2.2 Назначение передаточных чисел

2.3 Расчет нагрузочных и кинематических характеристик

3. Расчет передач привода

3.1 Расчет зубчатой передачи

3.2 Расчет поликлинового ремня

4. Расчет и построение эпюр

4.1 Силы в зацеплении

4.2 Тихоходный вал

4.3 Быстроходный вал

5. Расчет валов на выносливость

5.1 Проверка на усталостную прочность быстроходного вала

5.2 Проверка на усталостную прочность тихоходного вала

6. Проверка подшипников качения на долговечность

6.1 Расчет долговечности подшипников 7207 быстроходного вала

6.2 Расчет долговечности подшипников 7209 тихоходного вала

7. Расчет элементов корпуса редуктора

8. Определение элементов зубчатых колес, шкивов

9. Подбор шпонок и проверочный расчет шпоночных соединений на прочность

10. Назначение посадок сопряжений деталей привода

11. Описание способа смазки передач и подшипников привода

11.1 Смазывание зубчатого зацепления

11.2 Смазывание подшипников

12. Описание порядка сборки редуктора привода

13. Список литературы

1. Описание конструкции проектируемого привода

Привод является неотъемлемой частью любой машины. Приводное устройство, разработанное в проекте, включает электродвигатель, вращение от которого посредством ременной передачи передаётся на редуктор и далее через муфту на другие устройства.

Из существующих типов электродвигателей выбирают преимущественно асинхронные электродвигатели трехфазного тока серии 4А.

Муфты используются для соединения концов валов или для соединения валов с расположенными на них деталями. Основное назначение муфт – передача вращающего момента без изменения его модуля и направления. Муфты могут выполнять другие функции: предохранять механизм от перегрузок, компенсировать несносность валов, разъединять или соединять валы во время работы.

Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата. Назначение редуктора – передача вращения от вала двигателя к валу рабочей машины, понижение угловой скорости и соответственно повышение вращающего момента ведомого вала по сравнению с ведущим. Редуктор проектируют либо для привода отдельной машины, либо по заданной нагрузке (моменту на выходном валу) и передаточному числу без указания конкретного назначения. Спроектированный в настоящем курсовом проекте редуктор:

Начальные данные:

Рз = 2 кВт;

nз = 60 об/мин;

Режим нагрузки – постоянный. Долговечность привода – 10000 часов. Редуктор с нижним расположением шестерни и горизонтальным расположением ременной передачи.


Соответствует условиям технического задания.


2. Кинематический расчет привода

2.1 Выбор электродвигателя привода

Общий коэффициент полезного действия (КПД) привода:

где

– КПД муфты,
= 0,98;

– КПД пары подшипников качения,
= 0,99;

– КПД зубчатой передачи,
= 0,97;

– КПД клиноременной передачи,
= 0,93;

= 0,98·0,992·0,97·0,93 = 0,86

Расчетная требуемая мощность двигателя:

Рт.р. = Рз /

где Рз –мощность электродвигателя, Рз =2 кВт;

Рт.р. = 2 / 0,885 = 2,33 кВт

Определяем требуемое число оборотов двигателя:

,

где

- число оборотов двигателя,
- передаточное число редуктора,
=4,
- передаточное ременной передачи,
=3, подбираем по таблице 5.5 приложения [1];

об/мин;

По данным таблицы 5.1 приложения [1] принимаем

электродвигатель 4А112МВ8У3, у которого:

- мощность двигателя,
3 кВт,

- синхронная частота вращения,
750 об/мин,

S – скольжение, S= 3.7%;

По формуле 5.7 приложения [1] определяем частоту вращения у нагруженного ротора:

nдв=nс(S-1) = 750(0.037-1) = 722.25 об/мин;

2.2 Назначение передаточных чисел

По формуле 5.1 приложения [1] определим общее передаточное число двигателя:

uобщ=nдв/nс;

uобщ=22.25 /60=12;

Уточняем передаточное число цепной передачи:

Uц.п.= uобщ/uред.;

Uц.п.=12/4=3;

Тогда получаем:

передаточное число редуктора равно,

=4,

передаточное число ременной передачи, u.ц.п.= 3;

Расчет нагрузочных и кинематических характеристик

Силовые (мощность и вращающий момент) и кинематические (частота вращения и угловая скорость) параметры привода рассчитывают на валах из требуемой (расчетной) мощности двигателя и его номинальной частоты вращения при установившемся режиме.

Рассмотрим силовые и кинематические характеристики для каждого элемента привода

2.3 Расчет нагрузочных и кинематических характеристик

Ротор электродвигателя:

P2=Pтр.=2.33 кВт;

n1=nдв=722.25 об/мин;

ω1=π n1/30=(3.14*722.25)/30=75.6 с-1;

Т11/ ω1=2.33*103/75.6=30.82 Нм;

Быстроходный вал:

Р21*

*
=2.33*0.93*0.99=2.15 кВт;

n2=n1/uц.п=722.25 /3=240.75 об/мин;

ω2=π*n2/30=3.14*240.75/30=25.2 с-1;

Т22/ ω2=2.15*103/25.2=85.32 Нм;

Тихоходный вал:

Р32*

*
=2.15*0.99*0.97=2.06 кВт;

n3=n2/ uред =240.75/4=60 об/мин;

ω3=π* n3/30=3.14*60/30=6.3 с-1;

Т33/ ω3=2.06*103/6.3=327 Нм;


Вал рабочего органа:

Р43*

=2.06*0.98=2 кВт;

Т44/ ω3=2*103/6.3=320 Нм;

3. Расчет передач привода

3.1 Расчет зубчатой передачи

Выбор материала, вида термообработки и определение допускаемых напряжений зубчатых колес

В настоящее время основным материалом для изготовления зубчатых колес является сталь. В условиях индивидуального и мелкосерийного производства, предусмотренного техническими заданиями на курсовое проектирование, применяются колеса с твердостью материала не более 350 НВ. При этом обеспечивается чистовое нарезание зубьев после термообработки, высокая точность изготовления и хорошая прирабатываемость зубьев.

Для равномерного изнашивания зубьев и лучшей их прирабатываемости твердость шестерни НВ1 назначают больше твердости колеса НВ2.

В зубчатых передачах марки сталей шестерни и колеса выбираем одинаковые. Для передачи, с косыми зубьями выбираем сталь марки 40ХН, с улучшенной термообработкой, с твердостью: для колеса – НВ 250, для шестерни – НВ 295 [3].

Допускаемые контактные напряжения, МПа:

,

где

– предел контактной выносливости при базовом числе циклов, по табл. 3.2 [1]

МПа;

МПа;

– коэффициент долговечности, для длительной эксплуатации

=
,

где

NHO=15*106 – для шестерни;

NHO=24*106 – для колеса;

NHE1=60*n2*t=60*240.75*104=144.5*106 – для шестерни;

NHE2=60*n3*t=60*60*104=36*106 – для колеса;