Смекни!
smekni.com

Технология производства печатных плат (стр. 1 из 4)

ВВЕДЕНИЕ

На данный момент в мире выпускается огромное количество различных электронных средств, каждое из которых требует реализации отдельного сложного технологического процесса, включающего множество операций.

Конструкция и технология изготовления определяют в основном все качественные показатели современной электронной аппаратуры. Поэтому, при разработке и изготовлении ЭВА значительное внимание должно уделяться вопросам совершенствования технологических процессов изготовления деталей и узлов. При проектировании технологических процессов производства ЭВА одним из наиболее важных является вопрос выбора технологического оборудования, оснастки, инструмента, контрольно-измерительных приборов.

Проектирование и автоматизация технологических процессов сборки изделий ЭВС является сегодня одним из главных вопросов при решении задач повышения функциональных, конструктивных и эксплуатационных характеристик ЭВА. Сборочные работы в зависимости от вида техпроцесса иногда составляют до 40% общей трудоемкости изготовления электронной аппаратуры. Это объясняется особенностями производства и, прежде всего, сложностью современных конструкций, наличием большого количества связей. Отклонения параметров ЭВА, как правило, определяются точностью изготовления деталей и отклонениями параметров узлов и блоков, однако такие операции, как пропитка, обволакивание, заливка и пайка, могут существенно влиять на выходные параметры.

Выбор конкретного техпроцесса и технологического оборудования обусловлен технико-экономическими показателями производства. Основные требования, предъявляемые к технологии сборки – обеспечение высокой производительности сборочного процесса.

В данной курсовой работе разрабатывается технологический процесс сборки ПП для стабилизатора напряжения.


1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ РАЗРАБАТЫВАЕМОГО ИЗДЕЛИЯ ЭВС

Разрабатываемое изделие представляет собой стабилизатор напряжения. Стабилизатор напряжения – электрическое устройство, получающее питание от внешнего источника питания и выдающее на своём выходе напряжение, не зависящее от напряжения питания.

Разрабатываемый стабилизатор предназначен для питания устройств в процессе их налаживания в лаборатории.

Он защищает устройства от повышения или понижения напряжения питающей сети. Работа стабилизатора происходит без разрыва цепи нагрузки, без искажения формы выходного напряжения, что имеет большое значение. Использование стабилизатора напряжения позволяет увеличить ресурс и срок службы оборудования, а так же к экономии электроэнергии.

Технические параметры:

- напряжение питания 18...25 В;

- потребляемый ток – не более 10 мА.

Требования к конструкции:

- стабилизатор напряжения относится к группе стационарных устройств;

- внешний вид устройства должен отвечать современным требованиям к аппаратуре;

- масса не более 0, 2 кг;

- габаритные размеры не более 70х45х30;

Характеристики внешних воздействий:

- окружающая температура +10...+40 °С;

- относительная влажность 80% при температуре 25 °С.


2. АНАЛИЗ ТЕХНИЧЕСКОГО ЗАДАНИЯ И КОНСТРУКТИВНО-ТЕХНОЛОГИЧЕСКИХ ОСОБЕННОСТЕЙ ИЗДЕЛИЯ ЭВС

Согласно техническому заданию разрабатываемое устройство относится к группе стационарных устройств, которые работают в отапливаемых помещениях. Конструктивно блок устройства выполнен на плате из стеклотекстолита прямоугольной формы с четырьмя отверстиями для его крепления к корпусу. Для аппаратуры этой группы наиболее важными требованиями являются надежность, интенсивность отказов, потребляемая мощность и стоимость. Необходимым является применение недорогой и надежной элементной базы, соответствие элементов заданным характеристикам внешних воздействий, использование типовых конструкторских решений, повышение помехоустойчивости схемы, совместимость ЭРЭ и ИС. При разработке устройства необходимо учитывать требования к диапазону температур и влажности. Предусматривать особые меры защиты от механических и радиационных воздействий нет необходимости.

При разработке ТП необходимо учитывать принцип совмещения технических, экономических и организационных задач, решаемых в заданных производственных условиях. Построение технологического процесса сборки и степень его детализации зависят от типа производства - единичного, серийного и массового.

Сборка представляет собой совокупность технологических операций механического и электрического соединения деталей и ЭРЭ в изделии, выполненных в определенной последовательности для обеспечения заданного их расположения и взаимодействия. Различают стационарную и подвижную сборку.

Стационарная сборка выполняется на одном рабочем месте, к которому подаются все необходимые детали и сборочные единицы. Она является наиболее распространенная в условиях единичного и серийного производства. При этом стационарная сборка может строится по принципу концентрации и дифференциации. При концентрации весь сборочный процесс выполняется одним сборщиком, а при дифференциации разделяется на предварительную и окончательную. Предварительная сборка производится несколькими отдельными бригадами параллельно, а общая сборка – специальной бригадой или рабочим. Это обеспечивает специализацию рабочих и сокращает длительность сборки.

Подвижная сборка выполняется при перемещении собираемого изделия от одного сборочного места к другому. На каждом рабочем месте выполняется одна повторяющаяся операция. Эта форма сборки применяется в условиях поточного производства. Она может так же осуществляться двумя способами: со свободным перемещение собираемых объектов, перемещаемых от одного места к другому вручную или при помощи механического транспортера; и с принудительным движением собираемых объектов, которые перемещаются посредством конвейера при строго рассчитанном такте. Поточная сборка применяется в условиях серийного и массового производства. Переход на поточные методы повышает производительность труда, уменьшает длительность производственного цикла и размеры незавершенного производства.

Согласно ТЗ на изделие необходимо разработать техпроцесс для серийного производства, следовательно, выбираем метод поточной сборки со свободным перемещением собираемых объектов, на специализированном механизированном или автоматическом оборудовании.

Элементная база состоит из стандартных элементов и ИС. Навесные компоненты печатной платы можно разбить на три группы:

— ИМС в DIPкорпусах;

— элементы с цилиндрической формой корпуса, имеющие аксиальное расположение выводов (резисторы типа ОМЛТ);

— элементы со штыревыми выводами (конденсаторы, транзисторы, ИМС DA1).

Отсутствие нетиповых корпусов ИМС и ЭРЭ способствует высокой технологичности изделия и позволяет автоматизировать процессы подготовки элементов к монтажу и сборки.

Существуют две схемы сборки: схема сборки с базовой деталью и схема сборки веерного типа. Так как устройство достаточно простое, выбираем схему сборки с базовой деталью (Рис.1). Базовой деталью является печатная плата, на которой закрепляются остальные элементы конструкции. Схема сборки с базовой деталью показывает последовательность выполнения операций.

Рисунок 1 – Схема сборки с базовой деталью.

Необходимо знать допускаемый уровень дефектности. Это условие надо учесть при определении параметров техпроцесса, и программа запуска при детальной разработке техпроцесса должна быть увеличена. Также необходимо разработать план контроля, позволяющий поддерживать уровень дефектности на заданном уровне.


3. ПОИСК АНАЛОГОВ И ПРОТОТИПА ИЗ ИЗВЕСТНЫХ ТЕХНОЛОГИЙ, ОБЕСПЕЧИВАЮЩИХ РЕШЕНИЕ КОНКРЕТНОЙ ТЕХНИЧЕСКОЙ ЗАДАЧИ

В соответствии с требованиями ГОСТ 31109-82 при разработке техпроцессов сборки изделия ЭВС необходимо максимально использовать типовые технологические процессы.

Типизация технологических процессов уменьшает объем технологической документации, сокращает объем работ по подготовке производства, позволяет вести разработку и применение групповых методов обработки, организации специализированных участков, применения поточных линий и средств автоматизации.

В электронной промышленности существует шесть общих типов SMT сборки, каждому из которых соответствует свой порядок производства. При выборе типа сборки, основной целью должна быть минимизация числа операций, так как каждая операция может увеличивать промышленную стоимость. Существует специальный стандарт, в котором представлены основные виды сборок, разбитые по классам.

· Тип 1 – монтируемые компоненты установлены только на верхнюю сторону или interconnecting structure

· Тип 2 – монтируемые компоненты установлены на обе стороны платы или interconnecting structure

· Класс А - только through-hole (монтируемые в отверстия) компоненты

· Класс В - только поверхностно монтируемые компоненты (SMD)

· Класс С - смешанная: монтируемые в отверстия и поверхностно монтируемы компоненты

· Класс Х - комплексно-смешанная сборка: through-hole, SMD, fine pitch, BGA

· КлассY - комплексно-смешаннаясборка: through-hole, surface mount, Ultra fine pitch, CSP

· КлассZ - комплексно-смешаннаясборка: through-hole, Ultra fine pitch, COB, Flip Chip, TCP

В разрабатываемом устройстве применяются только through-holeкомпоненты, причем устанавливаются они только на верхнюю сторону платы. Таким образом, тип сборки для устройства – 1А.

Технологический процесс сборки ПП на основе THT-технологии состоит из следующих типовых этапов:

· подготовка выводов ЭК (формовка, обрезка), часто совмещается с автоматизированным монтажом;

· установка компонентов (ручная, автоматическая, полуавтоматическая);

· пайка (волной припоя, ручная, селективная);

· отмывка (ультразвуковая, струйная).

Используем технологический процесс, состоящий из этих этапов, в качестве аналога. С учетом того, что производство является серийным, целесообразно применять средства механизации и автоматизации, так как это повышает производительность и качество производства. Таким образом, внесем уточнения в типовой технологический процесс и получим технологический процесс для разрабатываемого устройства. Схема этого техпроцесса представлена ниже на рисунке 2.