Смекни!
smekni.com

Разработка электронного устройства для бесконтактного измерения температуры плазмы. (стр. 4 из 6)

. (1.17)

Для пирометра частичной радиации яркостную температуру нечерного тела можно также определить как температуру черного тела Т, имеющего в выбранном спектральном интервале то же значение эффективной длины волны и ту же величину энергии излучения.

Для монохроматического метода пирометрии зависимость между яркостной

и истинной
температурами при эффективной длине волны
и излучательной способности
получим из равенства

. (1.18)

При узком спектральном интервале, об

еспечивающем достаточную степень монохроматичности в пределах приближения Вина, имеем:

. (1.19)

Метод пирометрии по отношению потоков суммарной радиации

На изменении распределения плотности лучистой энергии по спектру в зависимости от температуры основан предложенный метод пирометрии излучения по отношению потоков суммарной радиации.

Метод основан на измерении отношения F(Т) суммарных потоков исследуемого излучения, прошедших через две системы с различными частотными (спектральными) характеристиками ξ 1 (λ) и ξ 2 (λ), соответственно

. (1.20)

Подбором

и
указанное отношение может быть сделано простой функцией температуры.

Если

и
одночлены вида
, где А = const, а N – любое целое число, то для получения линейной температурной зависимости следует выбирать
и
такими, чтобы
.

В общем случае отношение потоков суммарной радиации

. (1.21)

зависит от степени температуры m, где m = p·q, причем p и q – целые числа. Если же в качестве одного из потоков использовать поток полного излучения, то выражение (1.20) можно записать так:

. (1.22)

Нетрудно заметить, что суммарный поток лучистой энергии, в котором каждая компонента спектра уменьшена в λm раз, зависит от температуры сильнее, чем поток полной радиации.

В основе цветовой пирометрии лежит известный закон изменения спектрального состава излучения тела в зависимости от изменения температуры.

Если физическое тело является серым излучателем, то есть таким, у которого коэффициент лучеиспускательной способности для всех длин волн одинаков, то цветовая температура его будет равна истинной температуре тела.

Так как практически излучение большого количества веществ в раскаленном состоянии близко к серому, то отличие от температуры, обусловленное неполнотой излучения, при измерении цветовым пирометром мало.

Существует несколько методов измерения цветовой температуры. Метод относительных интенсивностей спектральных интервалов для автоматического непрерывного контроля температуры производственных процессов является наиболее простым и перспективным.

Заключается он в выделении двух спектральных яркостей соответствующими светофильтрами, например, в красной и желтой частях спектра, и определении их отношения.

Цветовой пирометр имеет следующие преимущества перед яркостным:

– показания приборов в меньшей степени зависят от состояния поверхности тела, так как отношения спектральных характеристик значительно меньше за

висят от состояния поверхности источника излучения, чем их абсолютные значения;

– поглощение окружающей средой значительно снижается, так как воздух, газы и пары не обладают резко выраженным избирательным поглощением в видимой области спектра и одинаково ослабляют монохроматическую энергию излучения обеих длин волн (это меньше относится к инфракрасным цветовым пирометрам, так как в спектральном интервале 0,9 – 1,8 мкм находятся интенсивные полосы поглощения водяного пара и углекислоты).

Разработанные в последнее время цветовые пирометры (ЦЭП-3 м, ЦЭПИР-010 и др.) в качестве чувствительного элемента имеют один фотоэлемент (фотодиод), а излучение поступает на него после прохождения через светофильтры. Использование одного чувствительного элемента значительно снижает погрешности приборов, так как нестабильность характеристик чувствительных элементов весьма высока. /6/

Измерения температуры по относительной интенсивности спектральных линий.

Интенсивность спектральной линии в случае термодинамического равновесия определяется выражением, являющимся следствием распределения Максвелла—Больцмана для числа молекул, обладающих энергией возбуждения Еi:

, (1.23)

где Еi, и Еk — энергии начального и конечного уровня возбуждения атомов (при переходе электрона с уровня i на уровень k происходит излучение);

gi и gk — статистические веса этих уровней;

Ai — вероятность данного перехода;

Nk; — число атомов, у которых электроны находятся на уровне k;

h — постоянная Планка;

ν —частота излучения;

Т — истинная температура.

Излученный квант энергии

hν=Ei – Ek. (1.24)

Орнштейн предложил определять температуру дуги и искры путем измерения отношения излучаемых данным атомом интенсивностей двух линий. Это отношение не будет зависеть от числа излучающих атомов. Оно зависит

от температуры пламени и входящих в уравнение констант. Эти константы могут быть получены путем измерений относительных интенсивностей этих же линий в излучении источника с известной температурой.

Интенсивность спектральных линий определяется путем фотографирования спектра пламени при помощи спектрографа с последующим фотометрированием фотопластинки.

Этот метод не требует предварительной градуировки или наличия источника сравнения, температура которого равна температуре пламени, поэтому он может быть применен для измерения сколь угодно высоких температур. Однако этот метод обладает рядом серьезных недостатков, имеющих особенно существенное значение при его применении для измерения температуры пламени.

В наших предыдущих рассуждениях мы пренебрегли реабсорбцией – поглощением излучения одних атомов другими атомами того же элемента при прохождении излучения через пламя. Чтобы реабсорбцией для обеих линий можно было пренебречь, необходима очень малая концентрация атомов излучающего элемента. Только в этом случае интенсивность линий пропорциональна концентрации атомов данного элемента.

Остается весьма узкий интервал концентраций, при котором еще возможно измерение температуры пламени методом относительных интенсивностей спектральных линий без реабсорбции. /7/

1.2 Выбор и описание структурной схемы

На рисунке 1.3 приведена структурная схема пирометра спектрального отношения. Пирометры спектрального отношения (цветовые пирометры) используют в качестве параметра отношение энергетических яркостей излучающего тела в двух спектральных интервалах (двух длин волн).

Рисунок 1.3 – Структурная схема пирометра спектрального отношения

Излучение от объекта измерени

я 1 попадает на фотоэлемент 4 через оптическую систему 2 (объектив с регулятором угла визирования) и обтюратор 3. Диск обтюратора имеет два отверстия, закрытые одно красным, а другое синим светофильтром. Амплитуды импульсов фототока, проходящего через фотоэлемент 4, пропорциональны интенсивности излучения в красной и синей частях спектра. После предварит
ельного усиления (усилитель 6) импульсы попадают в электронно-решающую схему (преобразователь импульсов 7 и выходной каскад 8), где после ряда преобразований формируются в виде прямоугольных импульсов одинаковой амплитуды, но разной длительности. Длительности импульсов пропорциональны логарифмам амплитуд исходных импульсов фототока. С помощью коллекторного переключателя 5 прямоугольным импульсам (соответствующим красному и синему световым потокам) сообщается разная полярность. Тогда постоянная составляющая пропорциональна разности средних значений этих прямоугольных импульсов и, следовательно, пропорциональна логарифму отношения амплитуд исходных импульсов фототока. Обратная величина пропорциональна цветовой температуре. Постоянная составляющая напряжения, пройдя фильтр, с выхода электронного блока попадает на вход автоматического электронного потенциометра 9. На нем имеется шкала в условных делениях, и поэтому связь потенциометра и цветовой температуры устанавливается при градуировке прибора. На рисунке 1.3 блок 10 – стабилизатор напряжения, блок питания – 11.