Смекни!
smekni.com

Розробка автоматичної роторної лінії складання деталей гідрозамка однобічного (стр. 14 из 17)

,

де uр1 і uр2 – числа позицій робочих роторів, між якими здійснюється міжопераційна передача деталей;

uтр – число загарбних органів транспортних роторів;

n1,n2 – частоти обертання технологічних роторів;

nтр – частота обертання транспортного ротора.

Задаючись числом позицій транспортних роторів, визначені їхні частоти обертання (див. п.4.2).

Транспортний ротор складається з вала, диска з загарбними органами, системи зубчастих передач, що зв'язують його з технологічним ротором і загальним приводом. Приймально-передавальні механізми можуть бути двох різновидів – кінематично взаємозалежними або невзаємопов'язаними з циклом роботи ротора. До першого типу відносяться різного роду кліщові захвати, перештовхувачи, штоки, до другого – підпружиненні охоплення, притиски (електромагніти, присоси).

Міжопераційна передача деталей здійснюється при спільному переміщенні загарбних органів транспортних роторів і прийомних пристроїв технологічних роторів. Чим більше час цього переміщення, тим сприятливіші умови передачі.

Співвідношення діаметрів сусідніх роторів визначає параметри z коліс зубчастої передачі транспортного руху роторів і є основою їхнього розрахунку [4,33]:

.

Для спрощення передачі деталей застосовуємо транспортні пристрої з однаковим кроком:

hтр1=hтр2=hтр3=hтр4=hтр5=hтр6=hтр7=hтр8=const=150,72 мм.

Раціональне компонування лінії повинне враховувати можливість зміни і зручності огляду інструментальних блоків на ділянці повороту ротора, змащення усіх вузлів машини, огляду і ремонту машин у лінії, а також дотримання умов обслуговування кожного подпотока технологічного потоку тими самими інструментальними блоками. Це значно полегшує пошук блоку, що відмовив, або некондиційної деталі і дозволяє здійснювати надійне спостереження за потоком деталей.

Проектована автоматична лінія складається з роторних машин, застосування конвеєра нераціонально внаслідок збільшеного відношення Rр1/Rр2.

Застосування транспортних роторів доцільно внаслідок необхідності огляду, контролю вузлів, що збираються, і видалення з потоку незібраних одиниць без зупинки автоматичної лінії, переорієнтації деталей, зміни рівня технологічного потоку, збільшення відстані між робочими роторами для зручності ремонту і заміни інструментальних блоків, підживлення потоку при наявності порожніх гнізд.

Міжопераційна передача деталей у роторній лінії здійснюється транспортними роторами, виконаними у вигляді роторів із кліщовими захватами, розташованими між робочими роторами і зв'язаними з ними кінематично за допомогою циліндричних зубчастих коліс таким чином, що в секторах прийому і видачі деталей несучі органи транспортних і робочих роторів мають однакові по величині і напрямкові транспортні швидкості, тобто відбувається спільний рух деталі і знаряддя.

Темп роторної лінії, тобто проміжок часу, через який з ротора виходить готовий виріб, визначається по формулі [4,10,33]:

Тр=

,
Тр=
хв.

Проведемо оцінку безперервності виконання технологічних процесів.

Показник Dт безперервності технологічного процесу – відношення інтервалу tр основної операції складання, виконуваного в періоді Тт технологічного циклу, до тривалості цього ж періоду [4,10,33]:

Dт=

,

Dт1=

;

Dт2=

;

Dт3=Dт4=Dт5=Dт7=Dт10=Dт11=

;

Dт6=Dт8=Dт14=

;

Dn9=Dт12=Dт13=

.

Для оцінки ступеня безперервності використання технологічних машин використовується показник безперервності Dр, що становить собою відношення інтервалу tр виконання основних операцій складання до періоду кінематичного циклу Тк машини [4,10,33]:

Dр=

,

Dр1=

;

Dр2=

;

Dр3=Dр4=Dр5=Dр7=Dр10=Dр11=

;

Dр6=Dр8=Dр14=

;

Dр9=Dр12=Dр13=

.

У реальних умовах експлуатації технологічних машин і автоматичних ліній середнє арифметичне (або приведене) значення часу випускного циклу збільшується стосовно теоретичного через простої для зміни інструмента, ремонту й обслуговування ліній, а також через порушення щільності технологічного потоку. Це приводить до зниження теоретичної продуктивності Пт до рівня дійсної продуктивності Пд.

Величина зниження продуктивності залежить від відношення суми втрат часу при виготовленні однієї деталі до досягнутого значення робочого циклу роторної машини або лінії.

4.4 Розробка роторної машини для установки стопорного кільця в корпус гідрозамка

Складальний виріб, як правило, має складну структуру, що підкоряється визначеним законам. Ці закони являють собою ні що інше, як види сполучення складальних компонентів.

Раціональним видом складання можна вважати той вид складання, що дозволяє одержати складальний виріб за мінімально можливу кількість складальних операцій, при цьому витримавши задані вимоги на складальний виріб.

Як раніше відзначалося, раціональний варіант складання можна одержати, використовуючи теорію графів. У цьому випадку ми одержуємо раціональне складання усього виробу, що відповідно впливає на структуру автоматичної технологічної системи. Однак, це не дозволяє судити про можливості проектування складальних технологічних модулів, а так само як і автоматичній складальній системі в цілому.

В основу проектування технологічних складальних машин повинні бути покладені наступні принципи [42]:

1) принцип компактності ;

2) принцип концентрації операцій;

3) принцип безперервності функціонування автоматичних складальних машин;

4) принцип об'ємно-просторового компонування;

5) принцип сполучення транспортних і технологічних функцій.

Третій і п'ятий принципи є домінуючими, хоча останній не у всіх випадках може бути використаний, тому що він прямо залежить від виду поверхонь складальних компонентів, що сполучаються.

Проектування складальних машин повинне здійснюватися, виходячи з прийнятого технологічного процесу і розробленої на його основі структурі автоматичній складальній системі. Кожна операція технологічного процесу складання ототожнює собою визначений автоматичний технологічний складальний модуль.

При проектуванні автоматичних технологічних складальних систем виникає питання про компонування автоматичних технологічних складальних модулів у єдину автоматичну технологічну складальну систему. Компонування автоматичної складальної системи повинно бути раціонально з погляду наступних критеріїв:

– мінімально займаний обсяг у просторі;

– мінімально займана площа;

– відсутність перетинань проміжних вихідних потоків.

Розглянемо етапи проектування на прикладі створення автоматичного технологічного складального модуля для складання елементів гідрозамка, використовуваного в секціях шахтних кріпей М87РОЗУМ, 1КД80 і КМТ. Операція технологічного процесу складання полягає в з'єднанні металевого розрізаного кільця і циліндричного корпуса.

Проектування автоматичних технологічних систем безперервної дії, як і інших машин, повинно починатися з аналізу складальних компонентів, що формують проміжний складальний компонент, або з аналізу проміжних складальних компонент, що формують проміжний складальний компонент або кінцевий складальний виріб.

Аналіз повинний містити в собі наступні основні етапи [42]:

1) аналіз і вибір раціональних схем базування для кожного складального і проміжного складального компонента;

2) перевірка умов збирання складальних і проміжних складальних компонентів;

3) аналіз і вибір раціональних схем завантажувальних пристроїв;

4) аналіз можливості сполучення транспортних і технологічних функцій;

5) аналіз можливості відмовлення від транспортних рухів в автоматичній технологічній складальній системі, тобто безперервна передача складальних компонентів між автоматичними складальними модулями без додаткового транспортування.

Наступним етапом проектування є розробка технологічного процесу складання в умовах його автоматичного виконання (див. п.2).

Остаточний вибір конструкції виробляється на підставі вище описаних принципів.

Зробимо аналіз і вибір схем базування даних складальних компонентів. Корпус має форму короткого порожнього вала і його базування найбільш раціональне здійснювати по нижньому торці і виходячи з точності розмірів і геометричних параметрів по внутрішній поверхні o20Н9 з використанням циліндричного підпружиненого пальця.